Imagine A is a NxM matrix with two basic properties
1) Each element in the matrix is distinct and lies in the range of 1<=A[i][j]<=(N*M)
2) For any two cells of the matrix, (i1,j1) and (i2,j2), if (i1^j1) > (i2^j2) then A[i1][j1] > A[i2][j2] ,where
1 ≤ i1,i2 ≤ N
1 ≤ j1,j2 ≤ M.
^ is Bitwise XOR
Given N and M , you have to calculatethe total number of matrices of size N x M which have both the properties
mentioned above.
Input format:
First line contains T, the number of test cases. 2*T lines follow with N on the first line and M on the second, representing the number of rows and columns respectively.
Output format:
Output the total number of such matrices of size N x M. Since, this answer can be large, output it modulo 10^9+7
Constraints:
1 ≤ N,M,T ≤ 1000
SAMPLE INPUT
1
2
2
SAMPLE OUTPUT
4
Explanation
The four possible matrices are:
[1 3] | [2 3] | [1 4] | [2 4]
[4 2] | [4 1] | [3 2] | [3 1]
题意 构造一个矩阵,使得在矩阵中ij位置,值为a[i],异或值为i^j,求得比它小的异或值的位置值比它小。且保证矩阵中的数唯一,1~n*m;
暴力做法,三维矩阵异或值图 0 3 2 0 填 1 2 3的排列 为 3! 1填 4 5 2填 6 7
3 0 1 3填 7 8
2 1 0
排列数为 3!*2!*2!*2!
由于1000^1000 最大为 1023 .所以暴力可求。 算出所有的 A!
#include <bits/stdc++.h>
using namespace std;
const int maxn=2333;
const int mod=1e9+7;
const int mm=1e6+7;
int n,m;
int cnt[maxn];
int fact[mm];
int main()
{
fact[0]=1;
for(long long i=1;i<=1e6;i++)
fact[i]=i*fact[i-1]%mod;
int T;
scanf("%d",&T);
while(T--)
{
memset(cnt,0,sizeof(cnt));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
cnt[i^j]++;
}
long long ans=1;
for(int i=0;i<1024;i++)
{
if(cnt[i])
{
ans=ans*fact[cnt[i]]%mod;
}
}
printf("%lld\n",ans );
}
}