机器学习基础(2) 概率论基础

本文介绍了概率论的基础概念及其在机器学习中的应用,包括条件概率、联合概率和边缘概率等基本概念,并详细阐述了贝叶斯决策理论,通过实例讲解了先验概率、似然函数及后验概率的概念。

机器学习基础(2) 概率论基础

概率密度函数

贝叶斯决策理论

*注意:以下小写p表示概率密度函数,大写的P表示概率。

引入随机变量后,以下是在二元的概率分布中对各钟概率的定义
条件概率(conditional probability):表示在另外一个随机满足某个条件时,一个随机变量满足某一条件的概率。条件概率记作 P(X=xi|Y=yi)
联合概率(conditional probability):表示两个个随机变量分别满足各自条件的概率。联合概率记作 P(X=xi,Y=yi)
边缘概率(marginal mrobability ):表示在一个随机变量满足某一条件的概率,与其他变量无关。边缘概率记作P(X=xi)
贝叶斯定理(Bayes’ theorem): 后验概率 = (相似度*先验概率)/标准化常量。
也就是说,后验概率与先验概率和相似度的乘积成正比。

P(Y=yi|X=xi)=P(X=xi|Y=yi)P(Y=yi)P(X=xi)=P(X=xi|Y=yi)P(Y=yi)jP(X=xi|Y=yj)P(Y=yj)

例1: 手写识别,对输入的字母进行识别分类(a或b)。
先验概率(prior probability):是指根据以往经验和分析得到的概率。例如:类别k的概率记作 p(Ck).
似然函数(likelihood):用来描述已知随机变量输出结果时,未知参数的可能取值。例如:已知类别为k的情况下,数据的测量值为x的概率记作 p(x|Ck).
后验概率(posterior probability ):是指在得到“结果”的信息后重新修正的概率。例如:已知测量值为x的情况下,预测类别为k的概率记作 p(Ck|x)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值