mpf9_Backtesting_mean-reverting_threshold_model_Survivorship bias_sklearn打印默认参数_Gini_k-mean_knn_CART

本文介绍了如何设计和实现一个事件驱动的回测系统,讨论了回测中的关注点,如数据质量、交易成本等。通过模拟投资策略对历史数据的反应,探讨了k-means聚类、K最近邻(KNN)和分类回归树(CART)等算法在回测中的应用,并强调了避免回测偏见和模型风险的重要性。

     A backtest is a simulation of a model-driven investment strategy's response to historical data. While working on designing and developing a backtest, it would be helpful to think in terms of the concept of creating video games.

     In this chapter, we will design and implement an event-driven backtesting system using an object-oriented approach. The resulting profits and losses of our trading model may be plotted on to a graph to help visualize the performance of our trading strategy. However, is this sufficient enough to determine whether it is a good model?

     There are many concerns to be addressed in backtesting—for example, the effects of transaction costs, exec

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIQING LIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值