mpf9_Backtesting_mean-reverting_threshold_model_Survivorship bias_sklearn打印默认参数_Gini_k-mean_knn_CART

本文介绍了如何设计和实现一个事件驱动的回测系统,讨论了回测中的关注点,如数据质量、交易成本等。通过模拟投资策略对历史数据的反应,探讨了k-means聚类、K最近邻(KNN)和分类回归树(CART)等算法在回测中的应用,并强调了避免回测偏见和模型风险的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     A backtest is a simulation of a model-driven investment strategy's response to historical data. While working on designing and developing a backtest, it would be helpful to think in terms of the concept of creating video games.

     In this chapter, we will design and implement an event-driven backtesting system using an object-oriented approach. The resulting profits and losses of our trading model may be plotted on to a graph to help visualize the performance of our trading strategy. However, is this sufficient enough to determine whether it is a good model?

     There are many concerns to be addressed in backtesting—for example, the effects of transaction costs, exec

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIQING LIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值