Task 4 基于深度学习的文本分类1
与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。
FastText
FastText是一种典型的深度学习词向量的表示方法,它非常简单通过Embedding层将单词映射到稠密空间,然后将句子中所有的单词在Embedding空间中进行平均,进而完成分类操作。
所以FastText是一个三层的神经网络,输入层、隐含层和输出层。
FastText在文本分类任务上,是优于TF-IDF的:
- FastText用单词的Embedding叠加获得的文档向量,将相似的句子分为一类
- FastText学习到的Embedding空间维度比较低,可以快速进行训练
如何使用验证集调参
在使用TF-IDF和FastText中,有一些模型的参数需要选择,这些参数会在一定程度上影响模型的精度,那么如何选择这些参数呢?
- 通过阅读文档,要弄清楚这些参数的大致含义,那些参数会增加模型的复杂度
- 通过在验证集上进行验证模型精度,找到模型在是否过拟合还是欠拟合
通过10折划分,我们一共得到了10份分布一致的数据,索引分别为0到9,每次通过将一份数据作为验证集,剩余数据作为训练集,获得了所有数据的10种分割。不失一般性,我们选择最后一份完成剩余的实验,即索引为9的一份做为验证集,索引为1-8的作为训练集,然后基于验证集的结果调整超参数,使得模型性能更优。
深度学习文本分类
1741

被折叠的 条评论
为什么被折叠?



