Python 多线程

  多线程和多进程是什么自行google补脑

  对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂。所以,这里力图用简单的例子,让你对多线程有个初步的认识。

 

单线程

 

  在好些年前的MS-DOS时代,操作系统处理问题都是单任务的,我想做听音乐和看电影两件事儿,那么一定要先排一下顺序。

(好吧!我们不纠结在DOS时代是否有听音乐和看影的应用。^_^

复制代码
from time import ctime,sleep

def music():
    for i in range(2):
        print "I was listening to music. %s" %ctime()
        sleep(1)

def move():
    for i in range(2):
        print "I was at the movies! %s" %ctime()
        sleep(5)

if __name__ == '__main__':
    music()
    move()
    print "all over %s" %ctime()
复制代码

   我们先听了一首音乐,通过for循环来控制音乐的播放了两次,每首音乐播放需要1秒钟,sleep()来控制音乐播放的时长。接着我们又看了一场电影,

每一场电影需要5秒钟,因为太好看了,所以我也通过for循环看两遍。在整个休闲娱乐活动结束后,我通过

print "all over %s" %ctime()

看了一下当前时间,差不多该睡觉了。

运行结果:

复制代码
>>=========================== RESTART ================================
>>> 
I was listening to music. Thu Apr 17 10:47:08 2014
I was listening to music. Thu Apr 17 10:47:09 2014
I was at the movies! Thu Apr 17 10:47:10 2014
I was at the movies! Thu Apr 17 10:47:15 2014
all over Thu Apr 17 10:47:20 2014
复制代码

  

  其实,music()和move()更应该被看作是音乐和视频播放器,至于要播放什么歌曲和视频应该由我们使用时决定。所以,我们对上面代码做了改造:

复制代码
#coding=utf-8
import threading
from time import ctime,sleep

def music(func):
    for i in range(2):
        print "I was listening to %s. %s" %(func,ctime())
        sleep(1)

def move(func):
    for i in range(2):
        print "I was at the %s! %s" %(func,ctime())
        sleep(5)



if __name__ == '__main__':
    music(u'爱情买卖')
    move(u'阿凡达')

    print "all over %s" %ctime()
复制代码

  对music()和move()进行了传参处理。体验中国经典歌曲和欧美大片文化。

运行结果:

复制代码
>>> ======================== RESTART ================================
>>> 
I was listening to 爱情买卖. Thu Apr 17 11:48:59 2014
I was listening to 爱情买卖. Thu Apr 17 11:49:00 2014
I was at the 阿凡达! Thu Apr 17 11:49:01 2014
I was at the 阿凡达! Thu Apr 17 11:49:06 2014
all over Thu Apr 17 11:49:11 2014
复制代码

 

 

 

多线程

 

  科技在发展,时代在进步,我们的CPU也越来越快,CPU抱怨,P大点事儿占了我一定的时间,其实我同时干多个活都没问题的;于是,操作系统就进入了多任务时代。我们听着音乐吃着火锅的不在是梦想。

  python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补,为了不浪费你和时间,所以我们直接学习threading 就可以了。

继续对上面的例子进行改造,引入threadring来同时播放音乐和视频:

复制代码
#coding=utf-8
import threading
from time import ctime,sleep


def music(func):
    for i in range(2):
        print "I was listening to %s. %s" %(func,ctime())
        sleep(1)

def move(func):
    for i in range(2):
        print "I was at the %s! %s" %(func,ctime())
        sleep(5)

threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))
threads.append(t1)
t2 = threading.Thread(target=move,args=(u'阿凡达',))
threads.append(t2)

if __name__ == '__main__':
    for t in threads:
        t.setDaemon(True)
        t.start()

    print "all over %s" %ctime()
复制代码

 

import threading

首先导入threading 模块,这是使用多线程的前提。

 

threads = []

t1 = threading.Thread(target=music,args=(u'爱情买卖',))

threads.append(t1)

  创建了threads数组,创建线程t1,使用threading.Thread()方法,在这个方法中调用music方法target=music,args方法对music进行传参。 把创建好的线程t1装到threads数组中。

  接着以同样的方式创建线程t2,并把t2也装到threads数组。

 

for t in threads:

  t.setDaemon(True)

  t.start()

最后通过for循环遍历数组。(数组被装载了t1和t2两个线程)

 

setDaemon()

  setDaemon(True)将线程声明为守护线程,必须在start() 方法调用之前设置,如果不设置为守护线程程序会被无限挂起。子线程启动后,父线程也继续执行下去,当父线程执行完最后一条语句print "all over %s" %ctime()后,没有等待子线程,直接就退出了,同时子线程也一同结束。

 

start()

开始线程活动。

 

运行结果:

>>> ========================= RESTART ================================
>>> 
I was listening to 爱情买卖. Thu Apr 17 12:51:45 2014 I was at the 阿凡达! Thu Apr 17 12:51:45 2014  all over Thu Apr 17 12:51:45 2014

  从执行结果来看,子线程(muisc 、move )和主线程(print "all over %s" %ctime())都是同一时间启动,但由于主线程执行完结束,所以导致子线程也终止。 

 

继续调整程序:

复制代码
...
if __name__ == '__main__':
    for t in threads:
        t.setDaemon(True)
        t.start()
    
    t.join()

    print "all over %s" %ctime()
复制代码

  我们只对上面的程序加了个join()方法,用于等待线程终止。join()的作用是,在子线程完成运行之前,这个子线程的父线程将一直被阻塞。

  注意:  join()方法的位置是在for循环外的,也就是说必须等待for循环里的两个进程都结束后,才去执行主进程。

运行结果:

复制代码
>>> ========================= RESTART ================================
>>> 
I was listening to 爱情买卖. Thu Apr 17 13:04:11 2014  I was at the 阿凡达! Thu Apr 17 13:04:11 2014

I was listening to 爱情买卖. Thu Apr 17 13:04:12 2014
I was at the 阿凡达! Thu Apr 17 13:04:16 2014
all over Thu Apr 17 13:04:21 2014
复制代码

  从执行结果可看到,music 和move 是同时启动的。

  开始时间4分11秒,直到调用主进程为4分22秒,总耗时为10秒。从单线程时减少了2秒,我们可以把music的sleep()的时间调整为4秒。

复制代码
...
def music(func):
    for i in range(2):
        print "I was listening to %s. %s" %(func,ctime())
        sleep(4)
...
复制代码

执行结果:

复制代码
>>> ====================== RESTART ================================
>>> 
I was listening to 爱情买卖. Thu Apr 17 13:11:27 2014I was at the 阿凡达! Thu Apr 17 13:11:27 2014

I was listening to 爱情买卖. Thu Apr 17 13:11:31 2014
I was at the 阿凡达! Thu Apr 17 13:11:32 2014
all over Thu Apr 17 13:11:37 2014
复制代码

  子线程启动11分27秒,主线程运行11分37秒。

  虽然music每首歌曲从1秒延长到了4 ,但通多程线的方式运行脚本,总的时间没变化。

 

本文从感性上让你快速理解python多线程的使用,更详细的使用请参考其它文档或资料。

 ==========================================================

class threading.Thread()说明:

 

class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})

This constructor should always be called with keyword arguments. Arguments are:

  group should be None; reserved for future extension when a ThreadGroup class is implemented.

  target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

  name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a small decimal number.

  args is the argument tuple for the target invocation. Defaults to ().

  kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init__()) before doing 

anything else to the thread.




多线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。

  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度

  • 程序的运行速度可能加快

  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。

线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。

  • 线程可以被抢占(中断)。

  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) -- 这就是线程的退让。

Python线程

Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:

thread.start_new_thread ( function, args[, kwargs] )

参数说明:

  • function - 线程函数。

  • args - 传递给线程函数的参数,他必须是个tuple(元组)类型。

  • kwargs - 可选参数。

实例:

#coding=utf-8
#!/usr/bin/python

import thread
import time

# 为线程定义一个函数
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print "%s: %s" % ( threadName, time.ctime(time.time()) )

# 创建两个线程
try:
   thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print "Error: unable to start thread"

while 1:
   pass

执行以上程序输出结果如下:

Thread-1: Thu Jan 22 15:42:17 2009
Thread-1: Thu Jan 22 15:42:19 2009
Thread-2: Thu Jan 22 15:42:19 2009
Thread-1: Thu Jan 22 15:42:21 2009
Thread-2: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:25 2009
Thread-2: Thu Jan 22 15:42:27 2009
Thread-2: Thu Jan 22 15:42:31 2009
Thread-2: Thu Jan 22 15:42:35 2009

线程的结束一般依靠线程函数的自然结束;也可以在线程函数中调用thread.exit(),他抛出SystemExit exception,达到退出线程的目的。

线程模块

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

thread 模块提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。

  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。

  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。

  • start():启动线程活动。

  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。

  • isAlive(): 返回线程是否活动的。

  • getName(): 返回线程名。

  • setName(): 设置线程名。

Threading模块创建线程

使用Threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法:

#coding=utf-8
#!/usr/bin/python

import threading
import time

exitFlag = 0

class myThread (threading.Thread):   #继承父类threading.Thread
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):                   #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
        print "Starting " + self.name
        print_time(self.name, self.counter, 5)
        print "Exiting " + self.name

def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            thread.exit()
        time.sleep(delay)
        print "%s: %s" % (threadName, time.ctime(time.time()))
        counter -= 1

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启线程
thread1.start()     #类似于java中的线程
thread2.start()

print "Exiting Main Thread"

以上程序执行结果如下;

Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Thu Mar 21 09:10:03 2013
Thread-1: Thu Mar 21 09:10:04 2013
Thread-2: Thu Mar 21 09:10:04 2013
Thread-1: Thu Mar 21 09:10:05 2013
Thread-1: Thu Mar 21 09:10:06 2013
Thread-2: Thu Mar 21 09:10:06 2013
Thread-1: Thu Mar 21 09:10:07 2013
Exiting Thread-1
Thread-2: Thu Mar 21 09:10:08 2013
Thread-2: Thu Mar 21 09:10:10 2013
Thread-2: Thu Mar 21 09:10:12 2013
Exiting Thread-2

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

实例:

#coding=utf-8
#!/usr/bin/python

import threading
import time

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print "Starting " + self.name
       # 获得锁,成功获得锁定后返回True
       # 可选的timeout参数不填时将一直阻塞直到获得锁定
       # 否则超时后将返回False
        threadLock.acquire()
        print_time(self.name, self.counter, 3)
        # 释放锁
        threadLock.release()

def print_time(threadName, delay, counter):
    while counter:
        time.sleep(delay)
        print "%s: %s" % (threadName, time.ctime(time.time()))
        counter -= 1


threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
    t.join()
print "Exiting Main Thread"

线程优先级队列( Queue)

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

  • Queue.qsize() 返回队列的大小

  • Queue.empty() 如果队列为空,返回True,反之False

  • Queue.full() 如果队列满了,返回True,反之False

  • Queue.full 与 maxsize 大小对应

  • Queue.get([block[, timeout]])获取队列,timeout等待时间

  • Queue.get_nowait() 相当Queue.get(False)

  • Queue.put(item) 写入队列,timeout等待时间

  • Queue.put_nowait(item) 相当Queue.put(item, False)

  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号

  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

实例:

#coding=utf-8
#!/usr/bin/python

import Queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, q):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.q = q
    def run(self):
        print "Starting " + self.name
        process_data(self.name, self.q)
        print "Exiting " + self.name

def process_data(threadName, q):
    while not exitFlag:
        queueLock.acquire()
        if not workQueue.empty():
            data = q.get()
            queueLock.release()
            print "%s processing %s" % (threadName, data)
        else:
            queueLock.release()
        time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1

# 创建新线程
for tName in threadList:
    thread = myThread(threadID, tName, workQueue)
    thread.start()
    threads.append(thread)
    threadID += 1

# 填充队列
queueLock.acquire()
for word in nameList:
    workQueue.put(word)
queueLock.release()

# 等待队列清空
while not workQueue.empty():
    pass

# 通知线程是时候退出
exitFlag = 1

# 等待所有线程完成
for t in threads:
    t.join()
print "Exiting Main Thread"

以上程序执行结果:

Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值