An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.




Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
#include <iostream>
using Position = struct AVLNode*;
using AVLTree = Position;
struct AVLNode {
int Data{ 0 };
AVLTree Left{ nullptr };
AVLTree Right{ nullptr };
int height{ 0 };
};
int GetHeight(AVLTree T) {
if (T == nullptr) {
return -1;
}
else {
return T->height;
}
}
AVLTree SingleRotateWithLeft(AVLTree T) {
AVLTree B = T->Left;
T->Left = B->Right;
B->Right = T;
T->height = std::max(GetHeight(T->Left), GetHeight(T->Right)) + 1;
B->height = std::max(GetHeight(B->Left), GetHeight(B->Right)) + 1;
return B;
}//LL旋转
AVLTree SingleRotateWithRight(AVLTree T) {
AVLTree B = T->Right;
T->Right = B->Left;
B->Left = T;
T->height = std::max(GetHeight(T->Left), GetHeight(T->Right)) + 1;
B->height = std::max(GetHeight(B->Left), GetHeight(B->Right)) + 1;
return B;
}//RR旋转
AVLTree DoubleRotateWithLeft(AVLTree T) {
T->Left = SingleRotateWithRight(T->Left);
return SingleRotateWithLeft(T);
}//LR旋转
AVLTree DoubleRotateWithRight(AVLTree T) {
T->Right = SingleRotateWithLeft(T->Right);
return SingleRotateWithRight(T);
}//RL旋转
AVLTree Insert(AVLTree T, int num) {
if (T == nullptr) {
T = new struct AVLNode;
T->Data = num;
}
else {
if (num < T->Data) {
T->Left = Insert(T->Left, num);
if (GetHeight(T->Left) - GetHeight(T->Right) > 1) {
if (num < T->Left->Data) {
T = SingleRotateWithLeft(T);
}
else {
T = DoubleRotateWithLeft(T);
}
}
}
else if (num > T->Data) {
T->Right = Insert(T->Right, num);
if (GetHeight(T->Right) - GetHeight(T->Left) > 1) {
if (num > T->Right->Data) {
T = SingleRotateWithRight(T);
}
else {
T = DoubleRotateWithRight(T);
}
}
}
else {
// T->Data == num;
// Do nothing;
}
}
T->height = std::max(GetHeight(T->Left), GetHeight(T->Right))+ 1;
return T;
}
int main() {
AVLTree T = nullptr;
int N, num;
std::cin >> N;
for (int i = 0; i < N; i++) {
std::cin >> num;
T = Insert(T, num);
}
if (T != nullptr) {
std::cout << T->Data << std::endl;
}
return 0;
}
本文介绍如何通过插入操作维护AVL树的平衡特性,并演示了如何在一系列整数插入后找到最终树的根节点。核心内容涉及AVL树的旋转规则和插入算法的实现。
2447

被折叠的 条评论
为什么被折叠?



