周志华《机器学习》 读后感

书还是比较厚的,我会挑感兴趣的章节先更新。

以写小结和感想为主。(我也是机器学习入门,所以小结以感性理解为主。)



第四章 决策树 ☑️


---------第四章 决策树 -----------

What

决策树 首先是一棵树 利用贪心法 每个中间节点 按照学习到的原则分隔 几波数据,(就是分叉几个子节点)。

所以对于分类问题而言,数据从根节点进入,最后掉到的叶结点是哪个类的 就是哪个类,就是output。

对于回归问题而言,每个节点设计的规则是一个区间,比如 <0.5 和  >= 0.5的这样就分了两个区间。

最后掉到的叶子节点也是个区间(到根节点路径上的条件的交集)。


How

1. 按照什么贪心原则来分叉子节点?

按照分叉后的信息熵,选个信息熵减小最多的分叉方法。

(看过数学之美以后就记得,p=0和1时 信息熵是0&

### 关于周志华机器学习》中的公式推导 为了更好地理解周志华机器学习》中的公式推导,可以从几个方面入手: #### 1. 掌握基础知识 确保具备足够的数学背景知识对于理解和掌握书中涉及的各种公式至关重要。这包括但不限于线性代数、概率论与统计学的基础概念[^3]。 #### 2. 阅读相关章节并跟随逻辑推理 每章开头通常会给出该部分的核心思想和目标,在阅读过程中应当注意作者是如何逐步引入新的知识点,并通过具体的例子或应用场景加深理解。当遇到复杂的定理证明时,建议先尝试自己思考其背后的原理再对照原文验证自己的想法是否正确[^4]。 #### 3. 参考其他资源辅助学习 如果觉得某些地方难以理解,则可以寻找额外的学习材料作为补充说明。例如,《机器学习》这本书在系列原创机器学习30讲的基础上进行了扩展,提供了详细的公式推导和代码实现案例,有助于更深入地了解各个算法的工作机制及其数学依据[^1]。 #### 4. 实践练习巩固所学内容 理论联系实际是提高编程能力和解决具体问题的有效途径之一。可以通过编写简单的程序来重现书中的实验结果或是参与开源项目贡献等方式积累经验。此外,“南瓜书”也是一份非常有价值的参考资料,它记录了许多人在自学过程中遇到的问题及解决方案,可以帮助读者克服难关成为更加优秀的开发者。 ```python import numpy as np def calculate_gradient(X, y, w): """ 计算梯度下降法中的梯度 参数: X (numpy.ndarray): 输入特征矩阵 y (numpy.array): 输出标签向量 w (numpy.array): 权重参数 返回: grad_w (numpy.array): 对w求偏导后的梯度值 """ N = len(y) predictions = 1 / (1 + np.exp(-X.dot(w))) error = predictions - y grad_w = (1/N) * X.T.dot(error) return grad_w ``` 此函数展示了如何基于给定的数据集计算逻辑回归模型中权重更新所需的梯度,这是许多机器学习教材都会讨论的一个典型实例。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Layumi1993

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值