LeetCode #785 - Is Graph Bipartite?

本文介绍了一种使用递归着色法来判断无向图是否为二分图的方法。通过给未着色的节点上色,并使其相邻节点上相反颜色,可以检查图是否能被分为两个独立子集,每条边连接不同子集的节点。若出现颜色冲突,则表明图不能被二分。

题目描述:

Given an undirected graph, return true if and only if it is bipartite.

Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists.  Each node is an integer between 0 and graph.length - 1.  There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.

Example 1:

Input: [[1,3], [0,2], [1,3], [0,2]]

Output: true

Explanation: 

The graph looks like this:

0----1

|      |

|      |

3----2

We can divide the vertices into two groups: {0, 2} and {1, 3}.

Example 2:

Input: [[1,2,3], [0,2], [0,1,3], [0,2]]

Output: false

Explanation: 

The graph looks like this:

0----1

| \    |

|   \  |

3----2

We cannot find a way to divide the set of nodes into two independent subsets.

Note:

• graph will have length in range [1, 100].

• graph[i] will contain integers in range [0, graph.length - 1].

• graph[i] will not contain i or duplicate values.

• The graph is undirected: if any element j is in graph[i], then i will be in graph[j].

采用着色法,如果一个点没有被着色,可以让它着一种颜色,然后让它的领接点都着相反的颜色,不断调用递归,可以让一整块连通区域全部着色,一旦有冲突就说明不能二分。

class Solution {
public:
    bool isBipartite(vector<vector<int>>& graph) {
        vector<int> colors(graph.size(),0); // 表示每个点的着色情况
        for(int i=0;i<graph.size();i++)
        {
            if(colors[i]==0&&helper(graph,i,1,colors)==false) // 如果i没有被着色,即它没有和之前的任何点连通,那么可以让它的颜色等于1
                return false;
        }
        return true;
    }
   
 
    // 递归函数,判断给一个点着某一种颜色是否可行
    bool helper(vector<vector<int>>& graph, int i, int color, vector<int>& colors)
    {
        if(colors[i]!=0) return colors[i]==color;
        colors[i]=color;
        for(int j=0;j<graph[i].size();j++)
        {
            if(helper(graph,graph[i][j],-color,colors)==false)
                return false;
        }
        return true;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值