数列分块入门 1 总结

Question:

在这里插入图片描述
这题分块在这里插入图片描述
这里的删除线有点毒瘤啊。。。
我们设一个block[]表示第i位属于哪个块。
我们便可以这样子打:

	st=sqrt(n);
	for (int i=1;i<=n;i++) bl[i]=(i-1)/st+1;

然后,对于opt==0
我们发现它除了整个块,但两边可能会有一点点的多出来(就是不够一整个块)
这两边我们可以暴力搞,而中间的,我们便存一个b[]表示第i块整体加了多少。

	for (int i=l;i<=min(bl[l]*st,r);i++) a[i]+=c;
	if (bl[l]!=bl[r])
		for (int i=(bl[r]-1)*st+1;i<=r;i++) a[i]+=c;
	for (int j=bl[l]+1;j<=bl[r]-1;j++) b[j]+=c;

对于opt==1
呵呵,简单,直接输出a[r]+b[block[r]] 即可。

完整代码如下:

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int n,a[50010],b[231],opt,l,r,c,st;
int bl[50010];

inline int read()
{
	int x=0,f=0; char c=getchar();
	while (c<'0' || c>'9') f=(c=='-') ? 1:f,c=getchar();
	while (c>='0' && c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return f ? -x:x;
}

void add(int l,int r,int c)
{
	for (int i=l;i<=min(bl[l]*st,r);i++) a[i]+=c;
	if (bl[l]!=bl[r])
		for (int i=(bl[r]-1)*st+1;i<=r;i++) a[i]+=c;
	for (int j=bl[l]+1;j<=bl[r]-1;j++) b[j]+=c;
}

int main()
{
	freopen("6277.in","r",stdin);
	freopen("6277.out","w",stdout);
	n=read();st=sqrt(n);
	for (int i=1;i<=n;i++) a[i]=read();
	for (int i=1;i<=n;i++) bl[i]=(i-1)/st+1;
	for (int i=1;i<=n;i++)
	{
		opt=read(),l=read(),r=read(),c=read();
		if (opt==0) add(l,r,c);
		else printf("%d\n",a[r]+b[bl[r]]);
	}
	return 0;
}
### 数列分块入门第8题的算法实现与解析 数列分块是一种高效的处理区间查询和修改的技术,其核心思想是将数组划分为若干个连续的小块,每一块内的元素可以快速更新或查询。对于数列分块入门第8题,假设问题是涉及区间的加法操作以及最大值查询,则可以通过以下方法来解决。 #### 1. 数据结构设计 为了高效完成区间加法和最大值查询的操作,我们可以维护两个辅助数组: - `block_sum[]`:存储每个块的最大值。 - `lazy_tag[]`:标记每个块是否有延迟更新(即尚未应用到具体元素上的增量)。 这些数据结构的设计使得我们可以在 $ O(\sqrt{n}) $ 的时间复杂度下完成单次操作[^3]。 #### 2. 初始化过程 初始化时,我们需要计算初始状态下的块划分情况,并填充上述辅助数组的内容。以下是具体的代码实现: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; int a[MAXN], block_size, block_num; long long block_max[400]; bool lazy_flag[400]; void build_block(int n) { block_size = sqrt(n); block_num = (n + block_size - 1) / block_size; memset(block_max, 0, sizeof(block_max)); memset(lazy_flag, false, sizeof(lazy_flag)); for (int i = 0; i < n; ++i) { int idx = i / block_size; block_max[idx] = max(block_max[idx], (long long)a[i]); } } ``` #### 3. 延迟标记的应用 当执行区间加法时,为了避免逐一遍历整个范围中的每一个元素,引入懒惰传播机制。如果某个整块完全被覆盖在当前操作范围内,则直接对该块打上标签并记录增量;否则逐一访问该块内部受影响的部分。 下面是针对这一逻辑的具体函数定义: ```cpp // Apply the pending update to all elements within specified block. void propagate(int blk_idx, int delta) { if (!lazy_flag[blk_idx]) return; // Update maximum value of this block accordingly. block_max[blk_idx] += delta * block_size; lazy_flag[blk_idx] = false; } // Add 'delta' to range [l, r]. void add_range(int l, int r, int delta, int n) { int start_blk = l / block_size, end_blk = r / block_size; if (start_blk == end_blk) { for (int i = l; i <= min(r, (start_blk + 1) * block_size - 1); ++i) a[i] += delta; // Recalculate new maximum after modification. block_max[start_blk] = 0; for (int i = start_blk * block_size; i < ((start_blk + 1) * block_size && i < n); ++i) block_max[start_blk] = max((long long)a[i], block_max[start_blk]); } else { // Process first incomplete block separately. for (int i = l; i < (start_blk + 1) * block_size; ++i) a[i] += delta; block_max[start_blk] = 0; for (int i = start_blk * block_size; i < ((start_blk + 1) * block_size && i < n); ++i) block_max[start_blk] = max((long long)a[i], block_max[start_blk]); // Fully covered blocks can simply apply tag updates. for (int b = start_blk + 1; b < end_blk; ++b){ block_max[b] += delta * block_size; lazy_flag[b] |= true; } // Handle last partial block similarly as above case. for (int i = end_blk * block_size; i <= r; ++i) a[i] += delta; block_max[end_blk] = 0; for (int i = end_blk * block_size; i < ((end_blk + 1) * block_size && i < n); ++i) block_max[end_blk] = max((long long)a[i], block_max[end_blk]); } } ``` #### 4. 查询最值功能 最后一步是在给定区间内查找最大的数值。这同样依赖于之前构建好的块级信息来进行加速检索。 ```cpp long long query_max(int l, int r) { int start_blk = l / block_size, end_blk = r / block_size; long long result = LLONG_MIN; if (start_blk == end_blk) { for (int i = l; i <= r; ++i) result = max(result, (long long)a[i]); } else { for (int i = l; i < (start_blk + 1) * block_size; ++i) result = max(result, (long long)a[i]); for (int b = start_blk + 1; b < end_blk; ++b) result = max(result, block_max[b]); for (int i = end_blk * block_size; i <= r; ++i) result = max(result, (long long)a[i]); } return result; } ``` 通过以上步骤即可有效应对数列分块相关的题目需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值