第十四周 项目4 二叉排序树

基于图结构的算法实现与优化
本文详细阐述了图结构的基本概念,并通过实例展示了如何使用邻接矩阵和邻接表来构造图。同时,介绍了二叉排序树的创建、查找、删除操作,以及其在数据结构中的应用。此外,文章还探讨了排序算法、动态规划等算法在图结构中的优化策略。
<img src="https://img-blog.youkuaiyun.com/20151130170932846" alt="" />
<img src="https://img-blog.youkuaiyun.com/20151130170947104" alt="" /><img src="https://img-blog.youkuaiyun.com/20151130170954126" alt="" />
<img src="https://img-blog.youkuaiyun.com/20151130171003910" alt="" />

//头文件

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G

#endif // GRAPH_H_INCLUDED

源文件

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0 && g.edges[i][j]!=INF)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}

//主函数

#include <stdio.h>
#include <malloc.h>
typedef int KeyType;

typedef struct node                 //记录类型
{
    KeyType key;                    //关键字项
    InfoType data;                  //其他数据域
    struct node *lchild,*rchild;    //左右孩子指针
} BSTNode;

//在p所指向的二叉排序树中,插入值为k的节点
int InsertBST(BSTNode *&p,KeyType k)
{
    if (p==NULL)                        //原树为空, 新插入的记录为根结点
    {
        p=(BSTNode *)malloc(sizeof(BSTNode));
        p->key=k;
        p->lchild=p->rchild=NULL;
        return 1;
    }
    else if (k==p->key)                 //树中存在相同关键字的结点,返回0
        return 0;
    else if (k<p->key)
        return InsertBST(p->lchild,k);  //插入到*p的左子树中
    else
        return InsertBST(p->rchild,k);  //插入到*p的右子树中
}

//由有n个元素的数组A,创建一个二叉排序树
BSTNode *CreateBST(KeyType A[],int n)   //返回BST树根结点指针
{
    BSTNode *bt=NULL;                   //初始时bt为空树
    int i=0;
    while (i<n)
    {
        InsertBST(bt,A[i]);             //将关键字A[i]插入二叉排序树T中
        i++;
    }
    return bt;                          //返回建立的二叉排序树的根指针
}

//输出一棵排序二叉树
void DispBST(BSTNode *bt)
{
    if (bt!=NULL)
    {
        printf("%d",bt->key);
        if (bt->lchild!=NULL || bt->rchild!=NULL)
        {
            printf("(");                        //有孩子结点时才输出(
            DispBST(bt->lchild);                //递归处理左子树
            if (bt->rchild!=NULL) printf(",");  //有右孩子结点时才输出,
            DispBST(bt->rchild);                //递归处理右子树
            printf(")");                        //有孩子结点时才输出)
        }
    }
}

//在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL
BSTNode *SearchBST(BSTNode *bt,KeyType k)
{
    if (bt==NULL || bt->key==k)         //递归终结条件
        return bt;
    if (k<bt->key)
        return SearchBST(bt->lchild,k);  //在左子树中递归查找
    else
        return SearchBST(bt->rchild,k);  //在右子树中递归查找
}

//二叉排序树中查找的非递归算法
BSTNode *SearchBST1(BSTNode *bt,KeyType k)
{
    while (bt!=NULL)
    {
        if (k==bt->key)
            return bt;
        else if (k<bt->key)
            bt=bt->lchild;
        else
            bt=bt->rchild;
    }
    return NULL;
}

void Delete1(BSTNode *p,BSTNode *&r)  //当被删*p结点有左右子树时的删除过程
{
    BSTNode *q;
    if (r->rchild!=NULL)
        Delete1(p,r->rchild);   //递归找最右下结点
    else                        //找到了最右下结点*r
    {
        p->key=r->key;          //将*r的关键字值赋给*p
        q=r;
        r=r->lchild;            //直接将其左子树的根结点放在被删结点的位置上
        free(q);                //释放原*r的空间
    }
}

void Delete(BSTNode *&p)   //从二叉排序树中删除*p结点
{
    BSTNode *q;
    if (p->rchild==NULL)        //*p结点没有右子树的情况
    {
        q=p;
        p=p->lchild;            //直接将其右子树的根结点放在被删结点的位置上
        free(q);
    }
    else if (p->lchild==NULL)   //*p结点没有左子树的情况
    {
        q=p;
        p=p->rchild;            //将*p结点的右子树作为双亲结点的相应子树
        free(q);
    }
    else Delete1(p,p->lchild);  //*p结点既没有左子树又没有右子树的情况
}

int DeleteBST(BSTNode *&bt, KeyType k)  //在bt中删除关键字为k的结点
{
    if (bt==NULL)
        return 0;               //空树删除失败
    else
    {
        if (k<bt->key)
            return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点
        else if (k>bt->key)
            return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点
        else
        {
            Delete(bt);     //调用Delete(bt)函数删除*bt结点
            return 1;
        }
    }
}
int main()
{
    BSTNode *bt;
    int n=12,x=46;
    KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11};
    bt=CreateBST(a,n);
    printf("BST:");
    DispBST(bt);
    printf("\n");
    printf("删除%d结点\n",x);
    if (SearchBST(bt,x)!=NULL)
    {
        DeleteBST(bt,x);
        printf("BST:");
        DispBST(bt);
        printf("\n");
    }
    return 0;

}

运行结果:



标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值