<img src="https://img-blog.youkuaiyun.com/20151130170932846" alt="" />
<img src="https://img-blog.youkuaiyun.com/20151130170947104" alt="" /><img src="https://img-blog.youkuaiyun.com/20151130170954126" alt="" />
<img src="https://img-blog.youkuaiyun.com/20151130171003910" alt="" />
//头文件
#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED
#define MAXV 100 //最大顶点个数
#define INF 32767 //INF表示∞
typedef int InfoType;
//以下定义邻接矩阵类型
typedef struct
{
int no; //顶点编号
InfoType info; //顶点其他信息,在此存放带权图权值
} VertexType; //顶点类型
typedef struct //图的定义
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵类型
//以下定义邻接表类型
typedef struct ANode //弧的结点结构类型
{
int adjvex; //该弧的终点位置
struct ANode *nextarc; //指向下一条弧的指针
InfoType info; //该弧的相关信息,这里用于存放权值
} ArcNode;
typedef int Vertex;
typedef struct Vnode //邻接表头结点的类型
{
Vertex data; //顶点信息
int count; //存放顶点入度,只在拓扑排序中用
ArcNode *firstarc; //指向第一条弧
} VNode;
typedef VNode AdjList[MAXV]; //AdjList是邻接表类型
typedef struct
{
AdjList adjlist; //邻接表
int n,e; //图中顶点数n和边数e
} ALGraph; //图的邻接表类型
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G
#endif // GRAPH_H_INCLUDED
源文件
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
g.n=n;
for (i=0; i<g.n; i++)
for (j=0; j<g.n; j++)
{
g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
if(g.edges[i][j]!=0 && g.edges[i][j]!=INF)
count++;
}
g.e=count;
}
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
int i,j;
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素
for (j=g.n-1; j>=0; j--)
if (g.edges[i][j]!=0) //存在一条边
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=g.edges[i][j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->n=g.n;
G->e=g.e;
}
void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
int i,j;
ArcNode *p;
g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
g.e=G->e;
for (i=0; i<g.n; i++) //先初始化邻接矩阵
for (j=0; j<g.n; j++)
g.edges[i][j]=0;
for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值
{
p=G->adjlist[i].firstarc;
while (p!=NULL)
{
g.edges[i][p->adjvex]=p->info;
p=p->nextarc;
}
}
}
void DispMat(MGraph g)
//输出邻接矩阵g
{
int i,j;
for (i=0; i<g.n; i++)
{
for (j=0; j<g.n; j++)
if (g.edges[i][j]==INF)
printf("%3s","∞");
else
printf("%3d",g.edges[i][j]);
printf("\n");
}
}
void DispAdj(ALGraph *G)
//输出邻接表G
{
int i;
ArcNode *p;
for (i=0; i<G->n; i++)
{
p=G->adjlist[i].firstarc;
printf("%3d: ",i);
while (p!=NULL)
{
printf("-->%d/%d ",p->adjvex,p->info);
p=p->nextarc;
}
printf("\n");
}
}
//主函数
#include <stdio.h>
#include <malloc.h>
typedef int KeyType;
typedef struct node //记录类型
{
KeyType key; //关键字项
InfoType data; //其他数据域
struct node *lchild,*rchild; //左右孩子指针
} BSTNode;
//在p所指向的二叉排序树中,插入值为k的节点
int InsertBST(BSTNode *&p,KeyType k)
{
if (p==NULL) //原树为空, 新插入的记录为根结点
{
p=(BSTNode *)malloc(sizeof(BSTNode));
p->key=k;
p->lchild=p->rchild=NULL;
return 1;
}
else if (k==p->key) //树中存在相同关键字的结点,返回0
return 0;
else if (k<p->key)
return InsertBST(p->lchild,k); //插入到*p的左子树中
else
return InsertBST(p->rchild,k); //插入到*p的右子树中
}
//由有n个元素的数组A,创建一个二叉排序树
BSTNode *CreateBST(KeyType A[],int n) //返回BST树根结点指针
{
BSTNode *bt=NULL; //初始时bt为空树
int i=0;
while (i<n)
{
InsertBST(bt,A[i]); //将关键字A[i]插入二叉排序树T中
i++;
}
return bt; //返回建立的二叉排序树的根指针
}
//输出一棵排序二叉树
void DispBST(BSTNode *bt)
{
if (bt!=NULL)
{
printf("%d",bt->key);
if (bt->lchild!=NULL || bt->rchild!=NULL)
{
printf("("); //有孩子结点时才输出(
DispBST(bt->lchild); //递归处理左子树
if (bt->rchild!=NULL) printf(","); //有右孩子结点时才输出,
DispBST(bt->rchild); //递归处理右子树
printf(")"); //有孩子结点时才输出)
}
}
}
//在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL
BSTNode *SearchBST(BSTNode *bt,KeyType k)
{
if (bt==NULL || bt->key==k) //递归终结条件
return bt;
if (k<bt->key)
return SearchBST(bt->lchild,k); //在左子树中递归查找
else
return SearchBST(bt->rchild,k); //在右子树中递归查找
}
//二叉排序树中查找的非递归算法
BSTNode *SearchBST1(BSTNode *bt,KeyType k)
{
while (bt!=NULL)
{
if (k==bt->key)
return bt;
else if (k<bt->key)
bt=bt->lchild;
else
bt=bt->rchild;
}
return NULL;
}
void Delete1(BSTNode *p,BSTNode *&r) //当被删*p结点有左右子树时的删除过程
{
BSTNode *q;
if (r->rchild!=NULL)
Delete1(p,r->rchild); //递归找最右下结点
else //找到了最右下结点*r
{
p->key=r->key; //将*r的关键字值赋给*p
q=r;
r=r->lchild; //直接将其左子树的根结点放在被删结点的位置上
free(q); //释放原*r的空间
}
}
void Delete(BSTNode *&p) //从二叉排序树中删除*p结点
{
BSTNode *q;
if (p->rchild==NULL) //*p结点没有右子树的情况
{
q=p;
p=p->lchild; //直接将其右子树的根结点放在被删结点的位置上
free(q);
}
else if (p->lchild==NULL) //*p结点没有左子树的情况
{
q=p;
p=p->rchild; //将*p结点的右子树作为双亲结点的相应子树
free(q);
}
else Delete1(p,p->lchild); //*p结点既没有左子树又没有右子树的情况
}
int DeleteBST(BSTNode *&bt, KeyType k) //在bt中删除关键字为k的结点
{
if (bt==NULL)
return 0; //空树删除失败
else
{
if (k<bt->key)
return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点
else if (k>bt->key)
return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点
else
{
Delete(bt); //调用Delete(bt)函数删除*bt结点
return 1;
}
}
}
int main()
{
BSTNode *bt;
int n=12,x=46;
KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11};
bt=CreateBST(a,n);
printf("BST:");
DispBST(bt);
printf("\n");
printf("删除%d结点\n",x);
if (SearchBST(bt,x)!=NULL)
{
DeleteBST(bt,x);
printf("BST:");
DispBST(bt);
printf("\n");
}
return 0;
}
运行结果: