357. Count Numbers with Unique Digits 完全不重复的数

本文探讨了一种算法问题,即给定一个非负整数n,如何计算在0到10^n范围内有多少个数字完全不重复的数。通过分析不同n值下的数位组合,提出了一种递归公式,用于快速计算不重复数字的数量。并通过代码实现了解决方案。

Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10^{n}.

Example:

Input: 2
Output: 91 
Explanation: The answer should be the total numbers in the range of 0 ≤ x < 100, 
             excluding 11,22,33,44,55,66,77,88,99

题意:给出一个n,求10^{n}中有多少个数字完全不重复的数。例如给出2,10^{2}=100,0~100中有11 22....99九个重复的数,所以不重复的数有91个,以此类推。

思路:根据推论,当n=1时,不重复数num[1] = 10;

当n=2时,num[2] = 9*9;

当n=3时,num[3] =9*9*8;

```

当n=10时,num[10] =9*8*7*6*5*4*3*2*1;

当n>=11时,10个数字组成>=11位的数时,必定有重复的数,num[11]=9*8*7*6*5*4*3*2*1*0。

将所有num相加,即为总共不重复的数。

代码:

class Solution {
    public int countNumbersWithUniqueDigits(int n) {
        if(n ==0 ){     //n^0=1
            return 1;
        }
        int uniqueDigits = 9;
        int result = 10;
        int loop = 9;
        while(  (--n>0) && (loop>0)){
            uniqueDigits *= loop;
            result +=uniqueDigits;
            loop--;
        }
        return result;
    }
}

 

A-1 Intersection Set of Prime Factors 分 20 作者 陈越 单位 浙江大学 Given a positive integer n. Select two distinct digits from the decimal repersentation(十进制表示)of n, we obtain another integer m. What is the size of the intersection set(交集)of the prime factors of n and m? For example, given n=623457198, its prime factor set is A = {2, 3, 7, 13, 380621}. Swapping 2 and 9 gives us m=693457128, of which the prime factor set is B = {2, 3, 7, 13, 109, 971}. Then the intersection set of A and B is {2, 3, 7, 13}, with 4 factors. Input Specification: Each input file contains one test case, which gives a positive integer n (10<n≤10 9 ). It is guaranteed that there are at least 2 distinct digits in n. Output Specification: Swap any pair of digits in n to obtain m, you are supposed to find the m with the largest intersection set of the prime factors of n and m. Output in a line the number of the prime factors in the intersection set, together with m. The numbers must be separated by 1 space, and there must be no extra space at the beginning or the end of the line. In case such an m is not unique, output the one with the smallest value. Sample Input: 623457198 Sample Output: 4 123457698 Hint: There are two m's with 4 common factors. Besides the one given in the problem description, we can also swap 6 and 1 to obtain 123457698. This number has a prime factor set {2, 3, 7, 13, 23, 29, 113}, and so the intersection set is also {2, 3, 7, 13}. This number is in the ouput because it is smaller than 693457128.(c++)
最新发布
07-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值