On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).
Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.
Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
Note:
costwill have a length in the range[2, 1000].- Every
cost[i]will be an integer in the range[0, 999]
题目要求:从楼梯的第一梯或第二梯开始向上爬,每次可以向上爬一梯或两梯,但每一梯都需要支付一定的费用,求爬完梯子花费的最小费用。
思路:和198. House Robber 思路一样,先求出爬到每一梯所累计花费的最少费用。
求累计的最少花费的方法:当爬到某一梯时,选择前一梯和前两梯累计花费的最小值加上当前梯的费用。
求最终的最少花费:求最后两梯的累计费用,选择最小值为最终的最小值。
代码:
lass Solution {
public int minCostClimbingStairs(int[] cost) {
int[] addCost = new int[cost.length]; //每一梯的累加值
int length = cost.length;
if(length == 0)
return 0;
if(length == 1)
return cost[0];
if(length == 2)
return Math.min(cost[0],cost[1]);
for(int i=0;i<length; i++){
if(i<2)
{
addCost[i] = cost[i] ;
continue;
}
addCost[i] = -1 ;
}
for(int i=2;i<cost.length; i++) {
if (-1 == addCost[i]) {
addCost[i] = cost[i] + Math.min(addCost[i-2],addCost[i-1]);
}
}
return Math.min(addCost[length-2],addCost[length-1]);
}
}

本文介绍了一种算法,用于解决从楼梯的第一梯或第二梯开始,每次向上爬一梯或两梯并支付相应费用的问题,目标是找到到达楼顶的最小总费用。通过动态规划方法,累积每梯的最少花费,最终比较最后两梯的累积费用,得出最小值。
476

被折叠的 条评论
为什么被折叠?



