算法分析与设计week13--746. Min Cost Climbing Stairs

最低成本攀登楼梯
本文介绍了一个经典的动态规划问题——最低成本攀登楼梯。题目要求找出从楼梯底部到达顶部所需的最小花费,可以一步上一个台阶或两个台阶。通过动态规划求解,给出了一种高效的算法实现。

746. Min Cost Climbing Stairs

Description

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example

Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:
cost will have a length in the range [2, 1000].
Every cost[i] will be an integer in the range [0, 999].

Analysis

题意:最低成本攀登楼梯

思路:使用动态规划,递推公式:dp[i] = cost[i] + min(dp[i - 1], dp[i - 2]);

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        int total_cost = 0;

        if (n == 1 || n == 0) return 0;

        int cost_i_1 = 0, cost_i_2 = 0;

        for (int i = 2; i <= n; i++) {
            total_cost = min(cost[i - 1] + cost_i_1,cost[i - 2] + cost_i_2);
            cost_i_2 = cost_i_1;
            cost_i_1 = total_cost;
        }
        return total_cost;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值