from sklearn.datasets import make_classification
import numpy as np
# =========================================1.整理数据================================================
x,y = make_classification(n_samples=1000, n_features=2,n_redundant=0,n_informative=1,n_clusters_per_class=1)
# n_samples:生成样本的数量
# n_features=2:生成样本的特征数,特征数=n_informative() + n_redundant + n_repeated
# n_informative:多信息特征的个数
# n_redundant:冗余信息,informative特征的随机线性组合
# n_clusters_per_class :某一个类别是由几个cluster构成的
# 生成的的x和y 是一个NUMPY数组
#训练数据和测试数据
x_data_train = x[:800,:];y_data_train = y[:800]
x_data_test = x[800:,:];y_data_test = y[800:]
#正例和反例
positive_x1 = [x[i,0] for i in range(1000) if y[i] == 1]
positive_x2 = [x[i,1] for i in range(1000) if y[i] == 1]
negetive_x1 = [x[i,0] for i in range(1000) if y[i] == 0]
negetive_x2 = [x[i,1] for i in range(1000) if y[i] == 0]
# ======================2.训练感知机,训练模型====================================
from sklearn.linear_model import