YOLOv5训练自定义数据集模型的参数与指令说明

一· 概述

📚 本文档主要记录如何在单台或多台机器上使用单个或多个 GPU 正确训练 YOLOv5 数据集 🚀。

二· 准备工作

训练环境安装,参考YOLOv5训练环境的部署与测试

自定义训练数据集处理,参考YOLOv5训练数据集的创建与格式说明

训练集配置文件的处理,参考YOLOv5训练数据集的配置文件说明

三· 参数说明

选择一个预训练模型作为训练的起点。这里我们选择 YOLOv5s,这是最小的、最快的可用模型。请参阅我们的 README 表格,了解所有模型的完整比较。我们将使用多 GPU 在 COCO 数据集上训练此模型。

首先看一下官方源代码脚本中提供了哪些参数:

parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值