👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆
《《《《《《《《更多资源还请持续关注本专栏》》》》》》》
论文与完整源程序_电网论文源程序的博客-优快云博客https://blog.youkuaiyun.com/liang674027206/category_12531414.html
附带PDF文档解读!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
作为目前最有潜力的大规模商业化减碳手段之一,基于化学溶剂吸收的燃烧后碳捕集技术有望实现化石能源的清洁使用.在燃煤火电厂动态运行的基础上耦合碳捕集系统对于推动“碳中和”进程具有重要意义.但是,大多数研究没有考虑诸如用电价格波动和用电量的变化等因素对耦合碳捕集系统的电厂的影响.为此,该文在建立电厂与碳捕集装置协同调度模型的基础上,引入信息间隙决策理论(informationgapdecisiontheory,IGDT)以同时满足系统的 鲁棒性和经济性要求,通过风险追求和风险规避2种决策角度得到不同的调度方案,为系统的动态运行提供指导性意见.该文首先构建了确定性电厂与碳捕集装置耦合调度模型;其次,针对实时市场中负荷需求的不确定性,通过引入信息间隙决策理论,得到不同风险态度下的不确定性电厂与碳捕集装置耦合调度模型,优化确定系统调度的决策方案;最后,通过算例分析得到持有不同风险态度下的电厂与碳捕集装置的调度方案,验证了模型的可靠性和有效性.
部分代码展示:
clear
clc
close all
warning off
%% 数据
%% 数据导入
HeatLoads=[680.22 684.36 678.78 648.54 627.66 631.26 640.08 632.7 559.08 539.28 544.5 535.68 508.86 505.08 486.9 513.18 516.42 542.7 572.94 569.7 577.08 626.04 642.24 661.86];
EleLoads=[1269.834566 1291.839307 1281.105287 1291.302606 1324.041367 1589.171661 1683.631037 1961.642155 2104.404621 2454.870374 2269.708529 1902.605045 1967.009165 1871.476387 1907.435354 2068.982355 2107.624827 2164.515133 2337.869556 2355.580689 1878.990201 1721.200107 1362.683839 1330.481779];
P_v_pres=[0 0 0 0 0 0 0 0 0 47.09256156 495.8569717 745.1705329 854.5906618 950.1633292 991.7155894 761.791437 367.0449651 47.09256156 0 0 0 0 0 0];
P_w_pres=[1154.741027 1111.944648 986.974165 929.9288807 582.6763797 347.0529442 533.0815213 372.1546751 519.0691949 362.3222083 255.8039667 205.0722659 217.0917321 200.3659735 146.3700273 241.280558 381.7153474 402.6534725 684.9533596 810.9252395 956.9846441 787.7730259 877.163686 972.7956918];
gasLoads=[129.9550082 138.6074202 142.068385 159.7108642 209.7682334 271.3902898 272.2344276 331.3240708 353.9469628 350.5704117 341.411517 337.3596558 317.5224184 283.6724942 295.5326298 321.6164866 334.9116563 363.8655814 407.3386761 424.6012933 408.4782621 386.3196459 320.8145557 245.0531917];
%% 创建决策变量
%% 定义信息间隙决策理论增加变量
HeatLoad=sdpvar(1,24);%实际热负荷
EleLoad=sdpvar(1,24);%实际电负荷
P_v_pre=sdpvar(1,24);%实际光伏
P_w_pre=sdpvar(1,24);%实际风电
gasLoad=sdpvar(1,24);%实际气负荷
C_CO2=sdpvar(1,1);%碳交易成本
P_yun=sdpvar(1,1);%运行维护成本
alfa=sdpvar(1,1);%待优化的目标函数
cost=sdpvar(1,1);%存储经济目标函数
PV_P= sdpvar(1,24,'full');
WP_P= sdpvar(1,24,'full');
% 购电
state=binvar(1,24,'full'); % 判断是否售电,1购电,0不购电
P_buy = sdpvar(1,24,'full'); % 购电功率
% 燃气轮机
GT_P = sdpvar(1,24,'full'); % 燃气轮机电功率出力
GT_G = sdpvar(1,24,'full'); % 燃气轮机耗气量
GT_Q = sdpvar(1,24,'full'); % 燃气轮机的产热量
C_GT= sdpvar(1,24,'full'); % 燃气轮机碳排放
% 燃气锅炉
GB_G = sdpvar(1,24,'full'); % 燃气锅炉气耗量
GB_Q = sdpvar(1,24,'full'); % 燃气轮机的产热量
% 电锅炉
EB= sdpvar(1,24,'full');
EB_Q= sdpvar(1,24,'full');
EB_Qin=sdpvar(1,24,'full'); % 电锅炉供给CSP的热量
EB_Qload= sdpvar(1,24,'full');
% 储气装置
GS_S = sdpvar(1,24,'full'); %储气罐的储热量
GS_Qout = sdpvar(1,24,'full'); %储气罐的放热功率
GS_Qin = sdpvar(1,24,'full'); %储气罐的充热功率
GS_state = binvar(1,24,'full'); % 判断储气罐状态,1为放热,0为充热
% 电储能储装置
PS_S = sdpvar(1,24,'full');
PS_Qout = sdpvar(1,24,'full');
PS_Qin = sdpvar(1,24,'full');
PS_state = binvar(1,24,'full');
% 购气
Gas = sdpvar(1,24,'full'); % 购买的天然气量
P2G= sdpvar(1,24,'full'); % 电转气
G_P2G= sdpvar(1,24,'full'); % 电转气
% 光热
EB_Qin_lamda=binvar(1,24,'full');
CSP_Qload=sdpvar(1,24,'full'); % CSP供热
CSP_Qload_lamda=binvar(1,24,'full');
CSP_S=sdpvar(1,24,'full'); % CSP中的储热罐的储热量
CSP_Qin=sdpvar(1,24,'full'); % CSP中的储热罐充热功率
CSP_Qout=sdpvar(1,24,'full'); % CSP的储热罐放热功率
CSP_SU=sdpvar(1,24,'full'); % CSP用于启动汽轮机的热量
CSP_Gen=sdpvar(1,24,'full'); % CSP的汽轮机发电所消耗的热量
CSP_GenP=sdpvar(1,24,'full'); % CSP的汽轮机发电的输出功率
CSP_u=binvar(1,24,'full'); % 判断CSP中的汽轮机是否在运行,1为运行
CSP_z=binvar(1,24,'full'); % CSP中的汽轮机的关机动作,0为关机
CSP_y=binvar(1,24,'full'); % 判断CSP中的汽轮机是否在启动状态,1为在启动状态
效果展示:
86号资源-源程序:论文可在知网下载《基于信息间隙决策理论的碳捕集电厂调度》本人博客有解读资源-优快云文库https://download.youkuaiyun.com/download/LIANG674027206/89205299👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆
《《《《《《《《更多资源还请持续关注本专栏》》》》》》》
论文与完整源程序_电网论文源程序的博客-优快云博客https://blog.youkuaiyun.com/liang674027206/category_12531414.html