- 博客(300)
- 收藏
- 关注
原创 Spark Streaming + Elasticsearch构建App异常监控平台7
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:15:09
735
原创 Spark Streaming + Elasticsearch构建App异常监控平台1
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:52
867
原创 Spark Streaming + Elasticsearch构建App异常监控平台2
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:49
723
原创 Spark Streaming + Elasticsearch构建App异常监控平台3
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:44
968
原创 Spark Streaming + Elasticsearch构建App异常监控平台4
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:39
948
原创 Spark Streaming + Elasticsearch构建App异常监控平台5
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:34
673
原创 Spark Streaming + Elasticsearch构建App异常监控平台6
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:26
1003
原创 Spark Streaming + Elasticsearch构建App异常监控平台8
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:08
671
原创 Spark Streaming + Elasticsearch构建App异常监控平台9
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:05
556
原创 Spark Streaming + Elasticsearch构建App异常监控平台10
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:14:01
734
原创 Spark Streaming + Elasticsearch构建App异常监控平台1
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:13:57
825
原创 Spark Streaming + Elasticsearch构建App异常监控平台12
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:13:53
812
原创 Spark Streaming + Elasticsearch构建App异常监控平台13
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:13:43
606
原创 Spark Streaming + Elasticsearch构建App异常监控平台14
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:13:40
576
原创 Spark Streaming + Elasticsearch构建App异常监控平台15
如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。
2025-01-02 19:13:37
648
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现2
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:45:04
803
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现14
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:45:00
903
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现4
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:55
841
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现1
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:51
779
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现3
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:48
534
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现5
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:43
715
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现6
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:41
767
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现7
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:39
911
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现8
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:37
933
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现9
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:34
879
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现10
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:32
594
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现11
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:30
605
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现12
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:27
1007
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现13
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:25
1017
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现15
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:44:22
685
原创 LruCache在美团DSP系统中的应用演进1
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:08:43
543
原创 LruCache在美团DSP系统中的应用演进2
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:54
568
原创 LruCache在美团DSP系统中的应用演进3
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:38
972
原创 LruCache在美团DSP系统中的应用演进4
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:36
621
原创 LruCache在美团DSP系统中的应用演进5
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:34
890
原创 LruCache在美团DSP系统中的应用演进6
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:31
878
原创 LruCache在美团DSP系统中的应用演进7
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:29
563
原创 LruCache在美团DSP系统中的应用演进8
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:26
981
原创 LruCache在美团DSP系统中的应用演进9
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:23
627
原创 LruCache在美团DSP系统中的应用演进10
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 22:07:22
916
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人