题目大意:给你N个单词,问这些单词能否首尾相连
解题思路:能首尾相连的话,就会形成一条欧拉路了
有向图的欧拉路的要求:
1.连通
2.要么全部的点的入度 = 出度,要么仅有两个点的入度 != 出度,其中一个点入度 - 出度 =1,另一个点出度-入度=1,其他的点都是入度=出度
就这样判断是否形成欧拉路
输出的话,就用fluery算法了
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cstdlib>
#include <stack>
using namespace std;
const int N = 1010;
const int M = 30;
char str[N][M];
int in[M], out[M];
bool vis[M], used[N];
int f[M];
int n, cas = 1, top;
struct Node{
int u, v;
Node() {}
Node(int u, int v): u(u), v(v) {}
};
vector<int> g[M];
stack<int> ans;
int find(int x) {
return x == f[x] ? x : f[x] = find(f[x]);
}
void init() {
for (int i = 0; i < 26; i++) {
f[i] = i;
g[i].clear();
in[i] = out[i] = 0;
vis[i] = 0;
}
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%s", str[i]);
int len = strlen(str[i]);
int s = str[i][0] - 'a';
int e = str[i][len - 1] - 'a';
in[s]++;
out[e]++;
vis[s] = vis[e] = true;
g[s].push_back(e);
int px = find(s), py = find(e);
if (px != py) f[px] = py;
}
}
void push(int u, int v) {
for (int i = 0; i < n; i++)
if (u == str[i][0] - 'a' && v == str[i][strlen(str[i]) - 1] - 'a' && !used[i]) {
ans.push(i);
used[i] = true;
return ;
}
}
void dfs(int x) {
while (!g[x].empty()) {
int tmp = *(g[x].begin());
g[x].erase(g[x].begin());
dfs(tmp);
push(x, tmp);
}
}
void solve() {
bool flag1 = true, flag2 = true, flag3 = true, connect = true;
for (int i = 0; i < 26; i++)
for (int j = i + 1; j < 26; j++)
if (vis[i] && vis[j]) {
int x = find(i);
int y = find(j);
if (x != y) connect = false;
}
int cnt = 0, start;
for (int i = 0; i < 26; i++)
if (in[i] - out[i] != 0) {
cnt++;
if (cnt >= 3) break;
if (abs(in[i] - out[i]) != 1) flag3 = false;
if (abs(in[i] - out[i]) == 1) {
if (in[i] > out[i]) {
start = i;
flag1 = false;
}
if (in[i] < out[i]) {
flag2 = false;
}
}
}
//超过两个入度和出度差不为0的或者不连通或者入度和出度差不为1
if (cnt >= 3 || !connect || !flag3) {
printf("Case %d: No\n", cas++);
return ;
}
//只出现一个入度和出度差为1
if ((flag1 && !flag2) || (flag2 && !flag1)) {
printf("Case %d: No\n", cas++);
return ;
}
//欧拉回路
if (flag1 && flag2) {
for (int i = 0; i < 26; i++)
if (vis[i]) {
start = i;
break;
}
}
memset(used, 0, sizeof(used));
printf("Case %d: Yes\n", cas++);
dfs(start);
printf("%s", str[ans.top()]);
ans.pop();
while (!ans.empty()) {
printf(" %s", str[ans.top()]);
ans.pop();
}
printf("\n");
}
int main() {
int test;
scanf("%d", &test);
while (test--) {
init();
solve();
}
return 0;
}