实例:随机森林在乳腺癌数据上的调参

实例:随机森林在乳腺癌数据上的调参
使模型预测更好的特征
A. max_features:增加复杂度
原因:
增加max_features一般能提高模型的性能,因为在每个节点上,我们有更多的选择可以考虑。 然而,这未必完全是对的,因为它降低了单个树的多样性,而这正是随机森林独特的优点。 但是,可以肯定,你通过增加max_features会降低算法的速度。 因此,你需要适当的平衡和选择最佳max_features。
Auto/None :简单地选取所有特征,每颗树都可以利用他们。这种情况下,每颗树都没有任何的限制。
sqrt :此选项是每颗子树可以利用总特征数的平方根个。 例如,如果变量(特征)的总数是100,所以每颗子树只能取其中的10个。“log2”是另一种相似类型的选项。
0.2:此选项允许每个随机森林的子树可以利用变量(特征)数的20%。如果想考察的特征x%的作用, 我们可以使用“0.X”的格式。

B. n_estimators:
在利用最大投票数或平均值来预测之前,你想要建立子树的数量。 较多的子树可以让模型有更好的性能,但同时让你的代码变慢。 你应该选择尽可能高的值,只要你的处理器能够承受的住,因为这使你的预测更好更稳定。

C. min_sample_leaf:减小复杂度(还有max_depth、min_sample_split)
如果您以前编写过一个决策树,你能体会到最小样本叶片大小的重要性。 叶是决策树的末端节点。 较小的叶子使模型更容易捕捉训练数据中的噪声。 一般来说,我更偏向于将最小叶子节点数目设置为大于50。在你自己的情况中,你应该尽量尝试多种叶子大小种类,以找到最优的那个。

使模型训练更容易的特征
A. n_jobs:
这个参数告诉引擎有多少处理器是它可以使用。 “-1”意味着没有限制,而“1”值意味着它只能使用一个处理器

B. random_state:
此参数让结果容易复现。 一个确定的随机值将会产生相同的结果,在参数和训练数据不变的情况下。 我曾亲自尝试过将不同的随机状态的最优参数模型集成,有时候这种方法比单独的随机状态更好。

C. oob_score
这是一个随机森林交叉验证方法。 它和留一验证方法非常相似,但这快很多。 这种方法只是简单的标记在每颗子树中用的观察数据。 然后对每一个观察样本找出一个最大投票得分,是由那些没有使用该观察样本进行训练的子树投票得到。

  • n_estimators

    data=load_breast_cancer().data
    target=load_breast_cancer().target
    
    
    test_score=[]
    for i in range(0,100,10):
        rfc=RandomForestClassifier(random_state=90,
                                   n_jobs=-1,
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值