【leetcode】1734. 解码异或后的排列(decode-xored-permutation)(位运算)[中等]

链接

https://leetcode-cn.com/problems/decode-xored-permutation/

耗时

解题:1 h 15 min
题解:41 min

题意

给你一个整数数组 perm ,它是前 n 个正整数的排列,且 n 是个 奇数

它被加密成另一个长度为 n - 1 的整数数组 encoded ,满足 encoded[i] = perm[i] XOR perm[i + 1] 。比方说,如果 perm = [1,3,2] ,那么 encoded = [2,1]

给你 encoded 数组,请你返回原始数组 perm 。题目保证答案存在且唯一。

提示:

  • 3 <= n < 105
  • n 是奇数。
  • encoded.length == n - 1

思路

根据题意 perm[] 是前 n 个正整数的排列,所以 perm[0] ~ perm[n-1] 一定分别是 1~n 中的某一个数,并且没有相同的数。

n 是个 奇数,那么,设 n = 2k+1

encoded[i] = perm[i] XOR perm[i + 1],将 encoded[] 写全,则
encoded[] = {perm[0] XOR perm[1], perm[1] XOR perm[2], perm[2] XOR perm[3], …, perm[2k-2] XOR perm[2k-1], perm[2k-1] XOR perm[2k]}encoded[] 一共 2k 个元素。

观察 encoded[] 数组可以发现,encoded[] 数组的偶数的位置正好是无重复的 perm[0]~perm[2k],将 encoded[] 偶数位置的元素异或,即可得到 perm[0] XOR ... XOR perm[2k-1]perm[0] XOR ... XOR perm[n-2],perm[] 数组的 第一个元素 异或到 倒数第二个元素。然后我们又已知 perm[0] ~ perm[n-1] 一定分别是 1~n 中的某一个数,所以 perm[0] XOR ... XOR perm[n-1] = 1 XOR ... XOR n

综上,可以得到 perm[n-1] = 1 XOR ... XOR n XOR perm[0] XOR ... XOR perm[2k-1],即 perm[] 数组的最后一位元素可以通过 1 XOR ... XOR n 异或 encoded[] 偶数位置的元素异或值 得到。

得到 perm[] 的最后一位元素之后就好办了,遍历 encoded[],迭代地向前异或即可得到 perm[]。

获取公式:perm[i]=perm[i+1] XOR encoded[i]

时间复杂度: O ( n ) O(n) O(n)

AC代码

class Solution {
public:
    vector<int> decode(vector<int>& encoded) {
        int n = encoded.size()+1;
        int x = 0;
        for(int i = 1; i <= n; ++i) {
            x ^= i;
        }
        for(int i = 0; i < n-1; ++i) {
            if(i&1) continue;
            x ^= encoded[i];
        }
        vector<int> perm(n);
        perm[n-1] = x;
        for(int i = n-2; i >= 0; --i) {
            perm[i] = perm[i+1]^encoded[i];
        }
        return perm;
    }
};
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值