💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、HHT暂态电能质量多扰动信号检测
对于电能质量多扰动信号的检测本文采用HHT法,该方法由经验模态分解法(Empirical Mode Decomposition,EMD)及Hilbert变换两部分组成,其核心部分是EMD,其特点是通过EMD对非线性、非平稳数据进行线性和平稳化处理,得到固有模态函数分量(IMF),再对IMF进行Hilbert变换,以求取各分量的瞬时频率和幅值。
1 对扰动信号的经验模态分解
1.1 EMD方法的筛分过程
对于固有模态函数,可以用Hilbert变换构造解析信号,然后求出瞬时频率。而对于一般不满足固有模态函数条件的复杂信号,先要采用EMD方法将其分解。EMD方法能将一个复杂信号分解为若干个固有模态函数之和,它是基于这样一个基本的假设:
任何复杂的信号都是由一些不同的固有模态函数组成,每一固有模态函数不论是线性或是非线性、非平稳的,都具有相同数量的极值点和过零点,在相邻的两个过零点之间只有一个极值点,而且上、下包络线关于时间轴局部对称,且任何两个模态之间是相互独立的;任何时候,一个信号都可以包含许多固有模态函数,固有模态函数相互叠加,便形成复杂信号。
1.2 固有模态函数判据的选择
EMD方法的优点是其结果只有有限个IMF分量,而且每个IMF分量都可以与一定的物理解释相对应,但是如果EMD分解过程不正确,就很容易造成各个IMF分量之间的频率混淆,这样不同的IMF分量就含有了相同的时间特征尺度,使得每个IMF分量不能反映真实的物理意义。另外,要分解出IMF分量,必须确定IMF的判据,因为EMD分解过程是一个筛分过程,在三次样条拟合的过程中可能产生人为干扰,一般情况下,需要多次迭代才能分解出一个IMF分量,虽然在EMD方法中定义IMF分量时要求其上、下包络线的平均值为零,而事实上,从实际信号中分离出来的IMF分量的包络线平均值很难为零。虽然筛分次数越多,包络线的平均值可能会越接近零,但是如果筛分次数太多,却只能得到定常振幅的调频波,这就会失去原始信号的真实物理意义。
1.3 EMD方法中的端点效应问题
Hilbert-Huang变换虽然能有效地分析非平稳信号,但在应用此变换时存在一个比较重要的问题,即端点效应问题【24】。这主要表现在两个方面:
其一,在运用EMD方法对非平稳信号进行分解时,在数据的两端会产生发散现象,并且这种发散的结果会逐渐向内“污染"到整个数据序列而使所得分解结果严重失真;
其二,在对IMF分量进行Hilbert变换时,信号的两端也会出现端点效应。如果这些端点效应得不到有效抑制,那么得到的Hilbert谱将不能如实地反映原始信号的特征。Huang采用在数据两端增加两组特征波导方式进行数据延拓,但是没有给出如何确定合适特征波的具体方法,而且这种方法虽然行之有效,但也存在着一些问题【25】。目前,有学者已提出了一些抑制端点效应的方法,包括基于神经网络的数据延拓法,边界波形匹配预测法,极值点延拓法,端点镜像法,基于AR模型的时间序列线性预测方法,偶延拓和奇延拓技术等,这些方法对抑制端点效应都有一定的效果【26】。但是虽然解决端点效应的方法很多,但至今为止仍然没有一种方法可以完美的解决,所以这是HHT用于信号检测方面值得继续认真研究的问题。
2 扰动信号Hilbert谱与Hilbert边际谱的获得
Hilbert-Huang变换方法是基于信号的局部特征时间尺度,将信号自适应地分解为若干个IMF分量之和,从而计算每一个IMF分量的瞬时频率和瞬时幅值。基于此,本节先介绍Hilbert谱与Hilbert边际谱的概念。
3 电压瞬时幅值的求取与分析
通过对瞬时频率的求取我们可以判定突变信号的故障发生和终止时间,可是在电压暂降检测时,我们不仅要知道暂降发生的时刻,还需要暂降发生时电压信号的幅值。而分析式(3-13)与式(3-14)我们可以看出精确地描述了信号的幅值在整个频率段上随时间和频率的变化规律,而反映了信号的幅值在整个频率段上的变化情况。从而可以通过对Hilbert及其边际谱的分析得出信号的电压幅值。
4 突变信号的突变点的求取与分析
信号的突变有两方面的含义:一是幅值的急剧变化;二是频率的急剧变化。突变信号的刻画有赖于这两者的有机结合【27】。EMD方法根据信号的特征尺度对信号进行筛选,这个过程表现为尺度带通滤波器对信号进行滤波,因此在一定尺度范围的信号被分离出来,组成一个IMF分量,这个IMF 分量具有有限带宽的频谱成分。突变信号在突变点表现为频率的急剧变化,根据频率与特征尺度的关系,这种急剧变化的频率反映在时域上是特征尺度的显著变化,这种显著变化可以由EMD 方法检测出来,从而有效地分离出信号的突变部分,确定突变点的位置。
⛄二、部分源代码和运行步骤
1 部分代码
2 运行步骤
(1)直接运行main即可一键出图。
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2019b
2 参考文献
[1] 何柳,冯骞,唐谟懿,欧阳盟盟.风电并网暂态电能质量扰动的检测与识别[J].电力电容器与无功补偿. 2020
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置