kernel pwn 入门(三) ret2usr+bypass SMEP

介绍

smep的全称是Supervisor Mode Execution Protection,它是内核的一种保护机制,作用是当CPU处于ring0模式的时候,如果执行了用户空间的代码就会触发页错误,很明现这个保护机制就是为了防止ret2usr攻击的,所以当我们要打ret2usr时就要绕过smep的保护。

这里还是用CISCN2017 babydriver的题为例子。

ptmx && tty_struct && tty_operations

ptmx设备是tty设备的一种,open函数被tty核心调用, 当一个用户对这个tty驱动被分配的设备节点调用open时,tty核心使用一个指向分配给这个设备的tty_struct结构的指针调用它,也就是说我们在调用了open函数了之后会创建一个tty_struct结构体,然而最关键的是这个tty_struct也是通过kmalloc申请出来的一个堆空间,下面是关于tty_struct结构体申请的一部分源码:

struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
{
   
   
	struct tty_struct *tty;

	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
	if (!tty)
		return NULL;

	kref_init(&tty->kref);
	tty->magic = TTY_MAGIC;
	tty_ldisc_init(tty);
	tty->session = NULL;
	tty->pgrp = NULL;
	mutex_init(&tty->legacy_mutex);
	mutex_init(&tty->throttle_mutex);
	init_rwsem(&tty->termios_rwsem);
	mutex_init(&tty->winsize_mutex);
	init_ldsem(&tty->ldisc_sem);
	init_waitqueue_head(&tty->write_wait);
	init_waitqueue_head(&tty->read_wait);
	INIT_WORK(&tty->hangup_work, do_tty_hangup);
	mutex_init(&tty->atomic_write_lock);
	spin_lock_init(&tty->ctrl_lock);
	spin_lock_init(&tty->flow_lock);
	INIT_LIST_HEAD(&tty->tty_files);
	INIT_WORK(&tty->SAK_work, do_SAK_work);

	tty->driver = driver;
	tty->ops = driver->ops;
	tty->index = idx;
	tty_line_name(driver, idx, tty->name);
	tty->dev = tty_get_device(tty);

	return tty;
}

其中kzalloc:

static inline void *kzalloc(size_t size, gfp_t flags)
{
   
   
	return kmalloc(size, flags | __GFP_ZERO);
}

而正是这个kmalloc的原因,根据前面介绍的slub分配机制,我们这里仍然可以利用UAF漏洞去修改这个结构体,这个tty_struct结构体的大小是0x2e0,源码如下:

struct tty_struct {
   
   
    int magic;
    struct kref kref;
    struct device *dev;
    struct tty_driver *driver;
    const struct tty_operations *ops;     // tty_operations结构体
    int index;
    /* Protects ldisc changes: Lock tty not pty */
    struct ld_semaphore ldisc_sem;
    struct tty_ldisc *ldisc;
    struct mutex atomic_write_lock;
    struct mutex legacy_mutex;
    struct mutex throttle_mutex;
    struct rw_semaphore termios_rwsem;
    struct mutex winsize_mutex;
    spinlock_t ctrl_lock;
    spinlock_t flow_lock;
    /* Termios values are protected by the termios rwsem */
    struct ktermios termios, termios_locked;
    struct termiox *termiox;    /* May be NULL for unsupported */
    char name[64];
    struct pid *pgrp;       /* Protected by ctrl lock */
    struct pid *session;
    unsigned long flags;
    int count;
    struct winsize winsize;     /* winsize_mutex */
    
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

saulgoodman-q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值