思路:扩展欧几里得找最大公约数,ax+by=gcd(a,b)的特解x0,y0,然后若gcd(a,b)整除c,则ax+by=c有解,其特解x=x0*c/gcd(a,b),y=y0*c/gcd(a,b),然后猜最小值x,y的范围,不会分析,数学分析就交给队友了,循环一遍储存最小值就行了,由于我的写法会爆long long 所以我加了一个特判
代码:
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
ll exc_gcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=1;
y=0;
return a;
}
ll gcd=exc_gcd(b,a%b,y,x);
y-=x*(a/b);
return gcd;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
ll i,j,a,b,c,p1,p2,q1,q2;
cin>>a>>b>>c;
cin>>p1>>p2;
cin>>q1>>q2;
ll x,y;
ll d=exc_gcd(a,b,x,y);
if(c%d==0){
x*=c/d;y*=c/d;
ll ans=9223372036854775807;
//cout<<x<<' '<<y<<endl;
for(int t=-1e5;t<=1e5;t++){
ll x1=x+b/d*t,y1=y-a/d*t;
//if(x1>1e6||x1<-1e6)continue;
ll sum=p2*x1*x1+p1*x1+q2*y1*y1+q1*y1;
if(sum<0)continue;
ans=min(sum,ans);
}
cout<<ans<<endl;
}
else{
cout<<"Kuon"<<endl;
}
}