论文阅读和分析:Hybrid Mathematical Symbol Recognition using Support Vector Machines

HMER论文系列
1、论文阅读和分析:When Counting Meets HMER Counting-Aware Network for HMER_KPer_Yang的博客-优快云博客
2、论文阅读和分析:Syntax-Aware Network for Handwritten Mathematical Expression Recognition_KPer_Yang的博客-优快云博客
3、论文阅读和分析:A Tree-Structured Decoder for Image-to-Markup Generation_KPer_Yang的博客-优快云博客
4、 论文阅读和分析:Watch, attend and parse An end-to-end neural network based approach to HMER_KPer_Yang的博客-优快云博客
5、 论文阅读和分析:Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition_KPer_Yang的博客-优快云博客
6、 论文阅读和分析:Mathematical formula recognition using graph grammar_KPer_Yang的博客-优快云博客
7、 论文阅读和分析:Hybrid Mathematical Symbol Recognition using Support Vector Machines_KPer_Yang的博客-优快云博客
8、论文阅读和分析:HMM-BASED HANDWRITTEN SYMBOL RECOGNITION USING ON-LINE AND OFF-LINE FEATURES_KPer_Yang的博客-优快云博客

主要贡献:

1、提出了一种基于支持向量机的混合识别系统,该系统同时使用在线和离线信息进行分类。

2、并行运行的两个基于支持向量机的多类分类器的概率输出通过加权和进行组合。实验结果表明,赋予在线信息稍高的权重会产生更好的结果。混合系统在单独使用时的整体错误率低于在线和离线识别系统。

复习SVM

下面所说的,在libsvm都有实现

SVMs基于两个观点:VC维度和最小化结构风险。

在VC理论中,最常用的概念为VC维(VC dimension)。VC维度(或Vapnik-Chervonenkis维度)是衡量可以通过统计分类算法学习的函数空间的容量(复杂度,表现力,丰富度或灵活性)的度量。它被定义为算法可以破碎(shatter)的最大点集的基数,在这里破碎(shatter)意为若对于一个假设空间H,如果存在m个数据样本能够被假设空间H中的函数按所有可能的2^h种形式分开,则称假设空间H能够把m个数据样本破碎(shatter)。在二维平面上的简单理解就是可以使得线性划分数据集所有点类别的最小直线数目。

SVMs遇到线性不可分的情况下,理论上在一个更高的维度空间可以线性可分,相当于给一个非线性决策平面在原来的特征空间。可以表示成:
f ( x ) = ∑ i α i y i K ( x , x i ) + b f(x)=\sum_i\alpha_iy_i K(x,x_i)+b f(x)=iαiyiK(x,xi)+b

y i y_i yi:label;

x i x_i xi:训练样本;

x x x:待分类样本;

K ( x , x i ) = ϕ ( x ) ϕ ( x i ) K(x,x_i)=\phi(x) \phi(x_i) K(x,

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值