# -*- coding: utf-8 -*-
#
# Copyright (C) 2022 Emperor_Yang, Inc. All Rights Reserved
#
# @CreateTime : 2023/2/9 22:12
# @Author : Emperor_Yang
# @File : ECG_DeepGCNs.py
# @Software : PyCharm
import torch
from torch.nn import ReLU
from easydict import EasyDict
from torch_geometric.nn import GENConv, LayerNorm, DeepGCNLayer, global_add_pool
from torch_geometric.data import DataLoader
from data_process.seed_loader_gnn_memory import SeedGnnMemoryDataset
config = EasyDict()
config.learn_rate = 0.01
config.epoch = 5
config.note_feature_dim = 5
config.note_num = 62
config.hidden_channels = 16
config.class_num = 3
config.hidden_layers = 2
config.batch_size = 16
config.max_loss_increase_time = 3
class ECG_DeeperGCNs(torch.nn.Module):
"""
GCN handle ECG
"""
def __init__(self, in_channels, hidden_channels, out_channels):
super(ECG_DeeperGCNs, self).__init__(
使用DeeperGCN训练和测试SEED数据集
于 2023-02-15 22:00:08 首次发布
文章介绍了一个用PyTorch实现的ECG_DeeperGCNs模型,该模型基于图神经网络(GENConv)进行心电图数据的分析。模型包含多层DeepGCNLayer,用于学习节点特征,并使用Adam优化器和交叉熵损失函数进行训练。代码还定义了训练和测试过程,以及数据加载器。模型在SEED数据集上进行训练和评估。

最低0.47元/天 解锁文章
550

被折叠的 条评论
为什么被折叠?



