Currency Exchange POJ - 1860

本文介绍了一种基于Dijkstra算法的最短路径寻找方法,并通过STL进行了优化,实现时间复杂度O(ElogV)。文章详细展示了算法的实现过程,包括节点结构定义、边的添加、初始化操作以及核心的Dijkstra算法实现。此外,还讨论了如何判断是否存在回环,为读者提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不标记,直至起始位置的dis大于初始即为YES,还有一种做法是判断某一点的遍历次数是否大于n,若大于n,即为有回环

 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <algorithm>

using namespace std;
typedef long long ll;

const int MAXN=1e6+10;
const int MAX=2000+10;
const int inf = 0X3f3f3f3f;

//最短路径-----dijkstra的stl优化 时间复杂度O(elog(v))
int n, m, s;
double v;

double dis[MAX];
int first[MAX], num;
int vis[MAX];

struct EDGE{
    int v, next;
    double c, r;
}edge[MAXN*2];          //链式向前星
typedef pair<int,int>P;             //stl储存

void init(){
    fill(dis, dis+n+1, 0);            //memset只能初始化-1,0,1
    memset(first,-1,sizeof(first));
    memset(vis, 0, sizeof(vis));
    num=0;
}
void addedge(int u,int v, double c, double r){
    edge[num].v=v;
    edge[num].c=c;
    edge[num].r=r;
    
    edge[num].next=first[u];
    first[u]=num++;
}
int dijkstra(int s,int g)
{
    priority_queue<P,vector<P>,greater<P> >q;
	  
    q.push(P(v, s));
    
	dis[s] = v;
   // vis[s] = 1;//有回环,不标记 
    
	while(!q.empty()){
//    	cout << dis[s] << ":" << v << endl;
		if(dis[s] > v)
    		return 1;
    		
	    P t=q.top();
        q.pop();
    
	    int u=t.second;
//	    if(vis[u]) continue;
  //  	vis[u] = 1;
    //	cout << endl << u << "--";

	    for(int i=first[u]; i!=-1; i=edge[i].next){
           
			int v = edge[i].v; //cout << v << ":" <<dis[v] << "-->";
            double c = edge[i].c;
            double r = edge[i ].r;
            
            if(dis[v] < (dis[u]-c)*r){
                dis[v] = (dis[u]-c)*r;
//                cout << dis[v] << "up" ; 

               	q.push(P(dis[v],v));
          
            }
        }
    }
    return 0;
}

int main(){
    int T;
    int flag=1;
    
   while(cin >> n >> m >> s >> v){
        init();
        
		memset(vis, 0, sizeof(vis));
        
		int u, v;
		double r, rr, c, rc;
        
		for(int i=1;i<=m;i++){
			cin >> u >> v >> r >> c >> rr >> rc;
			
           	addedge(u, v, c, r); 
			addedge(v, u, rc, rr);
		}
        printf("%s\n", dijkstra(s,n) ? "YES" : "NO");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值