To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don't?
You are given the cartesian coordinates of three non-collinear points in the plane.
Your job is to calculate the circumference of the unique circle that intersects all three points.
Input
The input will contain one or more test cases. Each test case consists of one line containing six real numbers x1,y1, x2,y2,x3,y3, representing the coordinates of the three points. The diameter of the circle determined by the three points will never exceed a million. Input is terminated by end of file.
Output
For each test case, print one line containing one real number telling the circumference of the circle determined by the three points. The circumference is to be printed accurately rounded to two decimals. The value of pi is approximately 3.141592653589793.
Sample Input
0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0
Sample Output
3.14
4.44
6.28
31.42
62.83
632.24
3141592.65
#include <iostream>
#include <cstdio>
#include <iomanip>
#include <cmath>
using namespace std;
const double Pi = 3.141592653589793;
double func(double x1, double y1, double x2, double y2)
{
double temp = abs(x1-x2)*abs(x1-x2)+abs(y1-y2)*abs(y1-y2);
return sqrt(temp);
}
int main()
{
double x1, y1, x2, y2, x3, y3;
while(cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3)
{
double a=func(x1,y1,x2,y2);
double b=func(x2,y2,x3,y3);
double c=func(x1,y1,x3,y3);
double p=(a+b+c)/2;
double temp=p*(p-a)*(p-b)*(p-c);
double r=a*b*c/(4*sqrt(temp));
cout << fixed << setprecision(2) << 2*r*Pi << endl;
}
return 0;
}

本文介绍了一种基于三非共线点坐标计算唯一相交圆周长的算法。通过输入三个点的笛卡尔坐标,利用几何公式计算出圆的直径,进而得出圆的周长。示例展示了算法的正确性和精度。
342

被折叠的 条评论
为什么被折叠?



