我们假设某计算机学院有这么一个班级,班上有40人,全是男程序员。大一的时候大家全都是单身。他们的辅导员在班会上做了这么一个预测,“到了大二,班上的张三,李四,老王等5位同学会有女朋友! 剩下的狗剩,二蛋,大头等35个同学,可能还要再等几年。”
好的,这个时候我们可以把这位辅导员的预测写成下面这张表:

到了大二,大家把这张表拿出来一核对,在被预计有女朋友的人里,发现除了老王,其他人还真的有了女朋友;在预计没有女朋友的人里,发现狗剩跟二蛋因为代码写得好,竟然也有了女朋友。
这个时候,我们上面的表加工一下,可以得到下面这张表:

稍微解释一下上面这张表。
左上角的数据1表示“被辅导员预计有女朋友,并且实际上也有了女朋友的人数”,一共有4位。在数据分析中,我们一般把这部分的数据叫做真阳性(True Positive,简称TP),也就是预计为真,实际上也为真的数据。在数据分析里,我们常常把预计会发生的事件叫做阳,而把预计不会发生的事件叫做阴。
右上角的数据2表示“被辅导员预计有女朋友,但是实际上并没有的人数”,也就是老王一个人。在数据分析中,我们把这部分的数据叫做假阳性(False Positiv

本文通过一个辅导员预测班级男生恋爱情况的例子,介绍了混淆矩阵的概念,包括真阳性(TP)、假阳性(FP)、假阴性(FN)和真阴性(TN),并展示了如何从实际结果构建混淆矩阵,帮助理解预测值与真实值的差异。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



