最大权闭合图


// 最大权闭合图 
#include
#include
#include
#include
using namespace std;
const int inf = (int) 1e9;
const int maxn = 70 + 10;
struct Edge{
    int u ,v, cap, next;
    Edge(int u = 0, int v = 0 ,int cap = 0, int next = -1){
        this ->u = u, this ->v = v, this ->cap = cap, this ->next = next;
    }
};

Edge edge[maxn * maxn];

int dist[maxn], vis[maxn], head[maxn],cur[maxn],cnt_edge;

void init(){
    cnt_edge = 0;
    memset(head,-1,sizeof(head));
}

void add(int u ,int v,int cap){
    edge[cnt_edge] = Edge(u,v,cap,head[u]);
    head[u] = cnt_edge ++;
    edge[cnt_edge] = Edge(v,u,0,head[v]);
    head[v] = cnt_edge ++;
}

bool bfs(int s,int t ,int n){

    queue Q;
    while(!Q.empty()) Q.pop();
    memset(vis,0,sizeof(vis));
    for(int i = 0;i <= n; ++ i) dist[i] = inf;
    vis[s] = 1, dist[s] = 0, Q.push(s);
    while(!Q.empty()){
        int now = Q.front();
        Q.pop();
        vis[now] = 0;
        for(int i = head[now]; i != -1;i = edge[i].next){
            Edge & e = edge[i];
            if(dist[e.v] > dist[now] + 1 && e.cap){
                dist[e.v] = dist[now] + 1;
                if(!vis[e.v]){
                    vis[e.v] = 1;
                    Q.push(e.v);
                }
            }
        }
    }
    return dist[t] < inf;
}

int dfs(int x, int t,int a){
    if(x == t || !a) return a;
    int f, flow = 0;
    for(int & i = cur[x];- 1 != i;i = edge[i].next){
        Edge & e = edge[i];
        if(dist[e.v] == dist[x] + 1 && e.cap && (f = dfs(e.v,t,min(a,e.cap)))){
            a -= f;
            flow += f;
            e.cap -= f;
            edge[i^1].cap +=f;
            if(!a) break;
        }
    }
    return flow;
}

int maxflow(int s,int t,int n){
    int flow = 0;
    while(bfs(s,t,n)){
        for(int i = 0;i <= n;++i){
            cur[i] = head[i];
        }
        flow += dfs(s,t,inf);
    }
    return flow;
}

int main(){
    int cas, T = 1;
    scanf("%d",&cas);
    while(cas --){
        int n ,m;
        int sum = 0;
        init();
        scanf("%d%d",&n,&m);
        int s = 0, t = n + m + 1;
        for(int i = 1; i<= n; ++ i){
            int val;
            scanf("%d",&val);
            add(s,i,val);
            sum += val;
        }
        for(int i = 1; i<= m; ++ i){
            int val;
            scanf("%d",&val);
            add(i + n , t, val);
        }
        for(int i = 1; i<= n; ++ i){
            int k;
            scanf("%d",&k);
            while(k --){
                int a;
                scanf("%d",&a);
                add(i,a + n + 1,inf);
            }
        }
        for(int i = 1; i<= m; ++ i)
            for(int j = 1; j<= m; ++ j){
                bool ok;
                scanf("%d",&ok);
                if(ok) add(i + n ,j + n ,inf);
            }
        int ans = sum - maxflow(s,t,t);
        printf("Case #%d: %d\n",T++,ans);
    }
    return 0;
}

内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积和侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差和中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究内容概要:本文围绕“Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究”展开,提出了一种结合改进粒子群优化算法(IPSO)与长短期记忆网络(LSTM)的混合预测模型。通过IPSO算法优化LSTM网络的关键参数(如学习率、隐层节点数等),有效提升了模型在短期电力负荷预测中的精度与收敛速度。文中详细阐述了IPSO算法的改进策略(如引入自适应惯性权重、变异机制等),增强了全局搜索能力与避免早熟收敛,并利用实际电力负荷数据进行实验验证,结果表明该IPSO-LSTM模型相较于传统LSTM、PSO-LSTM等方法在预测准确性(如MAE、RMSE指标)方面表现更优。研究为电力系统调度、能源管理提供了高精度的负荷预测技术支持。; 适合人群:具备一定Python编程基础、熟悉基本机器学习算法的高校研究生、科研人员及电力系统相关领域的技术人员,尤其适合从事负荷预测、智能优化算法应用研究的专业人士。; 使用场景及目标:①应用于短期电力负荷预测,提升电网调度的精确性与稳定性;②为优化算法(如粒子群算法)与深度学习模型(如LSTM)的融合应用提供实践案例;③可用于学术研究、毕业论文复现或电力企业智能化改造的技术参考。; 阅读建议:建议读者结合文中提到的IPSO与LSTM原理进行理论学习,重点关注参数优化机制的设计思路,并动手复现实验部分,通过对比不同模型的预测结果加深理解。同时可拓展尝试将该方法应用于其他时序预测场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值