android hander

本文详细介绍了Android中的Handler机制,包括其定义、特点及如何通过Handler在子线程与主线程间传递数据更新UI。同时提供了具体实例帮助理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Handler的定义:

          主要接受子线程发送的数据, 并用此数据配合主线程更新UI.

          解释: 当应用程序启动时,Android首先会开启一个主线程 (也就是UI线程) , 主线程为管理界面中的UI控件,进行事件分发, 比如说, 你要是点击一个 Button ,Android会分发事件到Button上,来响应你的操作。  如果此时需要一个耗时的操作,例如: 联网读取数据,    或者读取本地较大的一个文件的时候,你不能把这些操作放在主线程中,,如果你放在主线程中的话,界面会出现假死现象, 如果5秒钟还没有完成的话,,会收到Android系统的一个错误提示  "强制关闭".  这个时候我们需要把这些耗时的操作,放在一个子线程中,因为子线程涉及到UI更新,,Android主线程是线程不安全的,也就是说,更新UI只能在主线程中更新,子线程中操作是危险的. 这个时候,Handler就出现了.,来解决这个复杂的问题 ,    由于Handler运行在主线程中(UI线程中),  它与子线程可以通过Message对象来传递数据, 这个时候,Handler就承担着接受子线程传过来的(子线程用sedMessage()方法传弟)Message对象,(里面包含数据)  , 把这些消息放入主线程队列中,配合主线程进行更新UI。

二、Handler一些特点

        handler可以分发Message对象和Runnable对象到主线程中, 每个Handler实例,都会绑定到创建他的线程中(一般是位于主线程),
        它有两个作用: (1):  安排消息或Runnable 在某个主线程中某个地方执行, (2)安排一个动作在不同的线程中执行
      
        Handler中分发消息的一些方法
        post(Runnable)
        postAtTime(Runnable,long)
        postDelayed(Runnable long)
        sendEmptyMessage(int)
        sendMessage(Message)
        sendMessageAtTime(Message,long)
        sendMessageDelayed(Message,long)

        以上post类方法允许你排列一个Runnable对象到主线程队列中,
        sendMessage类方法, 允许你安排一个带数据的Message对象到队列中,等待更新.

三、Handler实例

      (1) 子类需要继承Hendler类,并重写handleMessage(Message msg) 方法, 用于接受线程数据

      以下为一个实例,它实现的功能为 : 通过线程修改界面Button的内容
  1. public class MyHandlerActivity extends Activity {
  2.     Button button;
  3.     MyHandler myHandler;

  4.     protected void onCreate(Bundle savedInstanceState) {
  5.         super.onCreate(savedInstanceState);
  6.         setContentView(R.layout.handlertest);

  7.         button = (Button) findViewById(R.id.button);
  8.         myHandler = new MyHandler();
  9.         // 当创建一个新的Handler实例时, 它会绑定到当前线程和消息的队列中,开始分发数据
  10.         // Handler有两个作用, (1) : 定时执行Message和Runnalbe 对象
  11.         // (2): 让一个动作,在不同的线程中执行.

  12.         // 它安排消息,用以下方法
  13.         // post(Runnable)
  14.         // postAtTime(Runnable,long)
  15.         // postDelayed(Runnable,long)
  16.         // sendEmptyMessage(int)
  17.         // sendMessage(Message);
  18.         // sendMessageAtTime(Message,long)
  19.         // sendMessageDelayed(Message,long)
  20.       
  21.         // 以上方法以 post开头的允许你处理Runnable对象
  22.         //sendMessage()允许你处理Message对象(Message里可以包含数据,)

  23.         MyThread m = new MyThread();
  24.         new Thread(m).start();
  25.     }

  26.     /**
  27.     * 接受消息,处理消息 ,此Handler会与当前主线程一块运行
  28.     * */

  29.     class MyHandler extends Handler {
  30.         public MyHandler() {
  31.         }

  32.         public MyHandler(Looper L) {
  33.             super(L);
  34.         }

  35.         // 子类必须重写此方法,接受数据
  36.         @Override
  37.         public void handleMessage(Message msg) {
  38.             // TODO Auto-generated method stub
  39.             Log.d("MyHandler", "handleMessage......");
  40.             super.handleMessage(msg);
  41.             // 此处可以更新UI
  42.             Bundle b = msg.getData();
  43.             String color = b.getString("color");
  44.             MyHandlerActivity.this.button.append(color);

  45.         }
  46.     }

  47.     class MyThread implements Runnable {
  48.         public void run() {

  49.             try {
  50.                 Thread.sleep(10000);
  51.             } catch (InterruptedException e) {
  52.                 // TODO Auto-generated catch block
  53.                 e.printStackTrace();
  54.             }

  55.             Log.d("thread.......", "mThread........");
  56.             Message msg = new Message();
  57.             Bundle b = new Bundle();// 存放数据
  58.             b.putString("color", "我的");
  59.             msg.setData(b);

  60.             MyHandlerActivity.this.myHandler.sendMessage(msg); // 向Handler发送消息,更新UI

  61.         }
  62.     }

  63. }
内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值