多校6 A Boring Question 5793

本文探讨了一种特定的组合数学问题,即计算给定n和m时特定等式的解的数量,并提供了一个高效的算法实现方案。该算法利用了快速幂运算来解决大规模数据输入的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Boring Question

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 635    Accepted Submission(s): 375


Problem Description
There are an equation.
0k1,k2,kmn1j<m(kj+1kj)%1000000007=?
We define that (kj+1kj)=kj+1!kj!(kj+1kj)! . And (kj+1kj)=0 while kj+1<kj.
You have to get the answer for each n and m that given to you.
For example,if n=1,m=3,
When k1=0,k2=0,k3=0,(k2k1)(k3k2)=1;
Whenk1=0,k2=1,k3=0,(k2k1)(k3k2)=0;
Whenk1=1,k2=0,k3=0,(k2k1)(k3k2)=0;
Whenk1=1,k2=1,k3=0,(k2k1)(k3k2)=0;
Whenk1=0,k2=0,k3=1,(k2k1)(k3k2)=1;
Whenk1=0,k2=1,k3=1,(k2k1)(k3k2)=1;
Whenk1=1,k2=0,k3=1,(k2k1)(k3k2)=0;
Whenk1=1,k2=1,k3=1,(k2k1)(k3k2)=1.
So the answer is 4.
 

Input
The first line of the input contains the only integer T,(1T10000)
Then T lines follow,the i-th line contains two integers n,m,(0n109,2m109)
 

Output
For each n and m,output the answer in a single line.
 

Sample Input
2 1 2 2 3
 

Sample Output
3 13
 




代码:


#include <algorithm>
#include <cstdio>
#include <vector>
#include <iostream>

using namespace std;

const int mod = 1000000007;
int n,m;

 long long quickmod(long long a,long long b)
{
    long long ans = 1;
    while(b)//用一个循环从右到左便利b的所有二进制位
    {
        if(b&1)//判断此时b[i]的二进制位是否为1
        {
            ans = (ans*a)%mod;//乘到结果上,这里a是a^(2^i)%m
            b--;//把该为变0
        }
        b/=2;
        a = a*a%mod;
    }
    return ans;
}

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
         cin>>n>>m;
         cout<<(long long)((quickmod(m,n+1)-1)%mod*(quickmod(m-1,mod-2)%mod))%mod<<endl;
    }
    return 0;
}



内容概要:论文提出了一种基于空间调制的能量高效分子通信方案(SM-MC),将传输符号分为空间符号和浓度符号。空间符号通过激活单个发射纳米机器人的索引来传输信息,浓度符号则采用传统的浓度移位键控(CSK)调制。相比现有的MIMO分子通信方案,SM-MC避免了链路间干扰,降低了检测复杂度并提高了性能。论文分析了SM-MC及其特例SSK-MC的符号错误率(SER),并通过仿真验证了其性能优于传统的MIMO-MC和SISO-MC方案。此外,论文还探讨了分子通信领域的挑战、优势及相关研究工作,强调了空间维度作为新的信息自由度的重要性,并提出了未来的研究方向和技术挑战。 适合人群:具备一定通信理论基础,特别是对纳米通信和分子通信感兴趣的科研人员、研究生和工程师。 使用场景及目标:①理解分子通信中空间调制的工作原理及其优势;②掌握SM-MC系统的具体实现细节,包括发射、接收、检测算法及性能分析;③对比不同分子通信方案(如MIMO-MC、SISO-MC、SSK-MC)的性能差异;④探索分子通信在纳米网络中的应用前景。 其他说明:论文不仅提供了详细的理论分析和仿真验证,还给出了具体的代码实现,帮助读者更好地理解和复现实验结果。此外,论文还讨论了分子通信领域的标准化进展,以及未来可能的研究方向,如混合调制方案、自适应调制技术和纳米机器协作协议等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值