最近的感悟

本文分享了一位程序员在项目实践中的几点重要体会:一是编写代码时不应过分追求速度而牺牲稳定性;二是要保持谦逊的态度,从每位同事身上学习;三是无论工作多忙都不能忽视持续学习的重要性;四是提醒大家注意平衡工作与生活。

第一个项目已经基本结束了,由于水平有限,参与的并不多,但是学到的东西不能说少。

1.写代码不能求快多于求稳。新进公司,初来乍到,所以上级并不了解我的代码能力,开始几个小功能写的还可以,所以有点高估自己了。于是接下来的任务难度加大的时候,自己还是希望能够和之前做的一样快,就开始码字的时候欠考虑,觉得差不多就行,赶紧写完了好让上级给个美美的眼神。可是后来的日子才发觉,贪多、贪快完全就是在给自己挖坑。日后各种bug还是得你自己来填,没人有时间来管你。戒骄戒躁,好好写规矩每一行代码,防患胜于未燃。

2.摆正自己的心态。公司有好多年长的或者年幼的同事,不要因为他比你年纪大就一味跟从,更不能因为他年幼于你就轻狂不屑。每个人都有值得你学习的一面,当然,自己也有别人值得肯定的一面,不要妄自尊大,更不能妄自菲薄。年龄不是问题,技术才是硬道理。

3.不要忘记学习。路漫漫其修远兮。

4.不能因为工作而忘记了生活。工作是为了更好的生活,下班晚,家里领导责怪多少次了,晚了就是晚了,没什么正当理由。认错。

基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB代码 动态避障路径规划:基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB 融合DWA的青蒿素优化算法(AOA)求解无人机三维动态避障路径规划,MATLAB代码 基于动态环境下多智能体自主避障路径优化的DWA算法研究,MATLAB代码 融合DWA的青蒿素优化算法AOA求解无人机三维动态避障路径规划,MATLAB代码 基于DWA的多智能体动态避障路径规划算法研究,MATLAB代码 融合动态窗口法DWA的粒子群算法PSO求解无人机三维动态避障路径规划研究,MATLAB代码 基于粒子群算法PSO融合动态窗口法DWA的无人机三维动态避障路径规划研究,MATLAB代码 基于ACOSRAR-DWA无人机三维动态避障路径规划,MATLAB代码 基于ACOSRAR-DWA无人机三维动态避障路径规划,MATLAB代码 基于DWA的动态环境下无人机自主避障路径优化,MATLAB代码 基于DWA的动态环境下机器人自主避障路径规划,MATLAB代码 基于城市场景下RRT、ACO、A*算法的无人机三维路径规划方法研究,MATLAB代码 基于城市场景下无人机三维路径规划的导航变量的多目标粒子群优化算法(NMOPSO),MATLAB代码 导航变量的多目标粒子群优化算法(NMOPSO)求解复杂城市场景下无人机三维路径规划,MATLAB代码 原创:5种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),MATLAB代码 原创:4种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),MATLAB代码 高维超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维
K-means算法是一种经典的聚类算法,它通过将数据集划分成K个簇,使得每个簇内的数据点之间的距离最小,而簇与簇之间的距离最大。在学习和实践K-means算法的过程中,我有以下几点感悟: 首先,K-means算法是一种简单易用的算法,适用于大规模数据处理。算法的核心思想是通过不断迭代,将数据集划分成K个簇。在每一次迭代中,K-means算法会计算每个数据点与每个簇中心的距离,并将数据点归属到距离最近的簇中心。通过多次迭代,可以得到最终的簇划分结果。 其次,K-means算法的效率和精度受到初始簇中心的影响。由于K-means算法的迭代是基于初始簇中心进行的,因此初始簇中心的选择会影响算法的效率和精度。在实践中,我们可以通过多次随机选择初始簇中心,并计算每次迭代的效果,以选择最优的初始簇中心。 最后,K-means算法的应用场景非常广泛。例如,它可以应用在图像分割、文本聚类、生物信息学等方面。通过对数据进行聚类分析,可以帮助我们更好地理解数据的内在规律和特征,从而作出更加准确的决策。 总之,K-means算法是一种非常有意义的聚类算法,它可以帮助我们更好地理解数据,从而作出更加准确的决策。在学习和实践K-means算法的过程中,我们需要注重算法的理论和实践结合,以便更好地理解算法的核心思想和应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值