import numpy as np
import cv2
import random
import os
import glob
# calculate means and std
train_txt_path = '/home/tupeng/DL/Classifier/temporal-segment-network-pytorch/list/tube_rgb_train_split.txt'
means = [0, 0, 0]
stdevs = [0, 0, 0]
index = 1
num_imgs = 0
with open(train_txt_path, 'r') as f:
lines = f.readlines()
random.shuffle(lines)
# lines = lines[:2]
for line in lines:
eles = line.strip().split(' ')
print('{}/{}'.format(index, len(lines)))
index += 1
datas = glob.glob(os.path.join(eles[0], 'diff_nor*.jpg'))
for data in datas:
num_imgs += 1
img = cv2.imread(data)
img = img.astype(np.float32) / 255.
for i in range(3):
means[i] += img[:, :, i].mean()
stdevs[i] += img[:, :, i].std()
means.reverse()
stdevs.reverse()
means = np.asarray(means) / num_imgs
stdevs = np.asarray(stdevs) / num_imgs
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))
1. pytorch transforms.Normalize中,图像集的像素均值(mean)和标准差(std)怎么计算?
最新推荐文章于 2025-03-02 19:35:32 发布