Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
Now please try your lucky.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
Sample Input
2 100 -4
Sample Output
1.6152 No solution!
已知y要求x的话,肯定是一个x,函数是一个单调的而不是像 二次函数那样,一个y有两个x的结果。刚开始没有想到,把他当成二次,用的三分做的,结果过了。过了之后 看的小伙伴的方法 其实这道题可以直接二分。
#if 0
#include<iostream>
#include<cmath>
#include<iomanip>
using namespace std;
double x,y;
double fun(double x)
{
double sum=(8.0*pow(x,4)+7.0*(pow(x,3))+2.0*pow(x,2)+3.0*x+6.0);
return sum;
}
int main()
{
int T;
cin>>T;
while(T--)
{
cin>>y;
double mid,midmid,l=0,r=100;
while(r-l>1.0e-6)
{
mid=(l+r)/2;
midmid=(mid+r)/2;
if(fabs(fun(mid)-y)<fabs(fun(midmid)-y)) //
{
r=midmid;
}
else
{
l=mid;
}
}
int x=r;
if(x>0&&x<100)
{
cout<<fixed<<setprecision(4)<<r<<endl;
}
else
{
cout<<"No solution!"<<endl;
}
}
}
#endif
本文介绍了一种通过三分法和二分法解决特定四次多项式方程的问题,该方程为8*x^4+7*x^3+2*x^2+3*x+6=Y,在区间[0,100]内寻找方程的实数根。
252

被折叠的 条评论
为什么被折叠?



