How to create function polymorphism in C

本文介绍如何在C语言中实现函数多态性,通过使用联合体和函数指针来处理不同数据类型间的加法运算,从而避免重复代码并保持高效执行速度。

It is possible to create C programs that simulate object-oriented methods. In this page, I will explain why it is sometimes desirable to do so, and then I will illustrate how to create polymorphism in C.

Why go to all this trouble?

There are already many high-level, easy-to-use languages out there with full object-oriented capabilities, including polymorphism. Why insist on doing this in C?

I am working on a communications systems simulator that is used, among other things, to estimate the complexity of different communication algorithms. It is able to do so at quite a low-level, keeping count of every operation required.

At one point, I found myself needing to execute the same algorithm, but with different data types. For instance, I wanted to compare performance when using floating-point versus fixed-point numbers. I hated the idea of maintaining several, almost identical versions of the different algorithms. We're talking a few thousand lines of code here.

This is the point where, in many situations, one switches to a language that is able to run the same code on several different data types — in other words, a language that supports polymorphism.

I had one main reason to do persist in using C, though: execution speed. It is not unusual for the simulator to take a few days to complete a test case, on modern hardware. I didn't want to think about extending this time any further. In my experience, C produces the fastest code of any language (excepting, maybe, carefully optimized assembler).

Another reason was just the plain challenge of doing it. It was an opportunity to learn more about C. For example, I had never needed to use function pointers before. Also, I believe that the ultimate test of whether you understand a high-level programming concept is to implement it in C.

How to go to all this trouble

OK, on to the technical details.

My main objective was to be able to tell the program which data type to use, without having to recompile. This type is selected once, when the program is invoked. I don't need to change the type once the program has started.

This simplifies the problem a bit, but more general polymorphism is easy to create with one or two simple additions to the main idea I'll describe.

I'll show how to create a polymorphic function to add two numbers. The numbers can both be either int or double. We start by creating a new data type that can hold either an integer or a double.

Example: Composite data type
typedef union
{
double floatpt;
int integer;
} number;

A union is just like a struct, except that it can hold only one element at a time. The memory required by the union is that of the largest data type it can hold.

Now we create two functions to add numbers. Both operate on variables of type number, but one uses the int part and the other the double part.

Example: Two add functions
number add_floatpt(number x, number y)
{
number result;

result.floatpt = x.floatpt + y.floatpt;
return result;
}

number add_integer(number x, number y)
{
number result;

result.integer = x.integer + y.integer;
return result;
}

As can be seen, both functions take and return arguments of type number. Internally, one of them assumes the union contains an int, and the other assumes it contains a double. In each function, we use the built-in overloading of the + operator.

Now we're ready to create our polymorphic add function. What we'll do is create a function pointer, that points to add_floatpt or to add_integer.

Example: Function pointer
/* pointer to function
* function "add" will show polymorphism */

number (* add)(number, number) = NULL;

if( sel == 1 ) {
add = &add_floatpt;
}
else {
add = &add_integer;
}

Here we use a variable named sel to decide whether add will point to add_floatpt or to add_integer. In this example, this is done once when the program starts. It can just as easily be done each time add is called, although it is a bit messier.

Now, the rest of the program can happily go about its way, calling add whenever it needs to perform an addition, completely oblivious to the underlying data types.

Below I present a full example, with comments.

Example: Full source code
/* This program shows how to create a form of function polymorphism
* using the C language
*
* The technique shown is nowhere near as powerful as what C++ or other OO
* languages provide, but is useful for some applications.
*
* Compilation:
* First, save the program as poly.c; then
* compile with: gcc -o poly poly.c
*
* Usage:
* The program takes three arguments:
* poly TYPE X Y
*
* TYPE: if equal to 1, then X and Y are taken as floating point numbers,
* otherwise, X and Y are taken as integers
*
* X, Y : two numbers of the type specified by TYPE
*
* The program will output the addition of X and Y.
*
* Examples:
*
* $ ./poly 1 2.0 3.0
* Result = 5.00000
*
* $ ./poly 2 2 3
* Result = 5
*
* */

#include <stdlib.h>

/* all quantities used by the program will be of type "number"
* (a union is used to save memory) */
typedef union
{
double floatpt;
int integer;
} number;

/* the next two functions are used to add numbers. Each function knows how to
* add a different type */
number add_floatpt(number x, number y)
{
number result;

result.floatpt = x.floatpt + y.floatpt;
return result;
}

number add_integer(number x, number y)
{
number result;

result.integer = x.integer + y.integer;
return result;
}

/* the next two functions are used to print the result. Each function knows how
* to print a different type */
void print_floatpt( number x )
{
printf( "Result = %1.5f/n", x.floatpt );
}

void print_integer( number x )
{
printf( "Result = %d/n", x.integer );
}

int main( int argc, char *argv[] )
{
int sel;
number x, y, result;

/* pointers to functions.
* functions "add" and "print" will show polymorphism */
number (* add)(number, number) = NULL;
void (* print)(number) = NULL;

sel = atoi( argv[1] );

/* make "add" and "print" point to the function of the correct type.
* note that the option to use integers or floating-point values
* is set at run time; there is no need to recompile. */
if( sel == 1 ) {
add = &add_floatpt;
print = &print_floatpt;
x.floatpt = atof( argv[2] );
y.floatpt = atof( argv[3] );

}
else {
add = &add_integer;
print = &print_integer;
x.integer = atoi( argv[2] );
y.integer = atoi( argv[3] );
}

/* from this point forward, "add" and "print" can be used as
* polymorphic functions. As long as the program does all its
* calculations using the "number" type, it doesn't care about
* whether the underlying types are integers or floating point
* numbers */
result = add( x, y );
print( result );

return 0;
}

I hope you find this explanation about creating function polymorphism in C clear and useful. I'd love to hear your comments or suggestions.

Contact

Please don't hesitate to contact me at this email address:

Miguel Bazdresch

This page was last updated on: 2006-05-04 (revision 0.1)

 
【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值