Manipulate bits in C

本文介绍如何在C语言中进行高效的位操作,包括位移、按位与、或、异或等基本概念及其应用场景。通过实例演示了位操作在实际编程中的运用,并提供了一些提高代码效率的小技巧。
/* * FreeRTOS Kernel V10.2.1 * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * http://www.FreeRTOS.org * http://aws.amazon.com/freertos * * 1 tab == 4 spaces! */ /*----------------------------------------------------------- * Implementation of functions defined in portable.h for the ARM CM3 port. *----------------------------------------------------------*/ /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #ifndef configKERNEL_INTERRUPT_PRIORITY #define configKERNEL_INTERRUPT_PRIORITY 255 #endif #if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0 #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html #endif #ifndef configSYSTICK_CLOCK_HZ #define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ /* Ensure the SysTick is clocked at the same frequency as the core. */ #define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL ) #else /* The way the SysTick is clocked is not modified in case it is not the same as the core. */ #define portNVIC_SYSTICK_CLK_BIT ( 0 ) #endif /* The __weak attribute does not work as you might expect with the Keil tools so the configOVERRIDE_DEFAULT_TICK_CONFIGURATION constant must be set to 1 if the application writer wants to provide their own implementation of vPortSetupTimerInterrupt(). Ensure configOVERRIDE_DEFAULT_TICK_CONFIGURATION is defined. */ #ifndef configOVERRIDE_DEFAULT_TICK_CONFIGURATION #define configOVERRIDE_DEFAULT_TICK_CONFIGURATION 0 #endif /* Constants required to manipulate the core. Registers first... */ #define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) ) #define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) ) #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) ) #define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) ) /* ...then bits in the registers. */ #define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL ) #define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL ) #define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL ) #define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL ) #define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL ) #define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL ) #define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL ) /* Constants required to check the validity of an interrupt priority. */ #define portFIRST_USER_INTERRUPT_NUMBER ( 16 ) #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 ) #define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) ) #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 ) #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 ) #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL ) #define portPRIGROUP_SHIFT ( 8UL ) /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */ #define portVECTACTIVE_MASK ( 0xFFUL ) /* Constants required to set up the initial stack. */ #define portINITIAL_XPSR ( 0x01000000 ) /* The systick is a 24-bit counter. */ #define portMAX_24_BIT_NUMBER ( 0xffffffUL ) /* A fiddle factor to estimate the number of SysTick counts that would have occurred while the SysTick counter is stopped during tickless idle calculations. */ #define portMISSED_COUNTS_FACTOR ( 45UL ) /* For strict compliance with the Cortex-M spec the task start address should have bit-0 clear, as it is loaded into the PC on exit from an ISR. */ #define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL ) /* * Setup the timer to generate the tick interrupts. The implementation in this * file is weak to allow application writers to change the timer used to * generate the tick interrupt. */ void vPortSetupTimerInterrupt( void ); /* * Exception handlers. */ void xPortPendSVHandler( void ); void xPortSysTickHandler( void ); void vPortSVCHandler( void ); /* * Start first task is a separate function so it can be tested in isolation. */ static void prvStartFirstTask( void ); /* * Used to catch tasks that attempt to return from their implementing function. */ static void prvTaskExitError( void ); /*-----------------------------------------------------------*/ /* Each task maintains its own interrupt status in the critical nesting variable. */ static UBaseType_t uxCriticalNesting = 0xaaaaaaaa; /* * The number of SysTick increments that make up one tick period. */ #if( configUSE_TICKLESS_IDLE == 1 ) static uint32_t ulTimerCountsForOneTick = 0; #endif /* configUSE_TICKLESS_IDLE */ /* * The maximum number of tick periods that can be suppressed is limited by the * 24 bit resolution of the SysTick timer. */ #if( configUSE_TICKLESS_IDLE == 1 ) static uint32_t xMaximumPossibleSuppressedTicks = 0; #endif /* configUSE_TICKLESS_IDLE */ /* * Compensate for the CPU cycles that pass while the SysTick is stopped (low * power functionality only. */ #if( configUSE_TICKLESS_IDLE == 1 ) static uint32_t ulStoppedTimerCompensation = 0; #endif /* configUSE_TICKLESS_IDLE */ /* * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure * FreeRTOS API functions are not called from interrupts that have been assigned * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY. */ #if ( configASSERT_DEFINED == 1 ) static uint8_t ucMaxSysCallPriority = 0; static uint32_t ulMaxPRIGROUPValue = 0; static const volatile uint8_t * const pcInterruptPriorityRegisters = ( uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16; #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/ /* * See header file for description. */ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) { /* Simulate the stack frame as it would be created by a context switch interrupt. */ pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */ *pxTopOfStack = portINITIAL_XPSR; /* xPSR */ pxTopOfStack--; *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */ pxTopOfStack -= 5; /* R12, R3, R2 and R1. */ *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */ pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */ return pxTopOfStack; } /*-----------------------------------------------------------*/ static void prvTaskExitError( void ) { /* A function that implements a task must not exit or attempt to return to its caller as there is nothing to return to. If a task wants to exit it should instead call vTaskDelete( NULL ). Artificially force an assert() to be triggered if configASSERT() is defined, then stop here so application writers can catch the error. */ configASSERT( uxCriticalNesting == ~0UL ); portDISABLE_INTERRUPTS(); for( ;; ); } /*-----------------------------------------------------------*/ __asm void vPortSVCHandler( void ) { PRESERVE8 ldr r3, =pxCurrentTCB /* Restore the context. */ ldr r1, [r3] /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */ ldr r0, [r1] /* The first item in pxCurrentTCB is the task top of stack. */ ldmia r0!, {r4-r11} /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */ msr psp, r0 /* Restore the task stack pointer. */ isb mov r0, #0 msr basepri, r0 orr r14, #0xd bx r14 } /*-----------------------------------------------------------*/ __asm void prvStartFirstTask( void ) { PRESERVE8 /* Use the NVIC offset register to locate the stack. */ ldr r0, =0xE000ED08 ldr r0, [r0] ldr r0, [r0] /* Set the msp back to the start of the stack. */ msr msp, r0 /* Globally enable interrupts. */ cpsie i cpsie f dsb isb /* Call SVC to start the first task. */ svc 0 nop nop } /*-----------------------------------------------------------*/ /* * See header file for description. */ BaseType_t xPortStartScheduler( void ) { #if( configASSERT_DEFINED == 1 ) { volatile uint32_t ulOriginalPriority; volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER ); volatile uint8_t ucMaxPriorityValue; /* Determine the maximum priority from which ISR safe FreeRTOS API functions can be called. ISR safe functions are those that end in "FromISR". FreeRTOS maintains separate thread and ISR API functions to ensure interrupt entry is as fast and simple as possible. Save the interrupt priority value that is about to be clobbered. */ ulOriginalPriority = *pucFirstUserPriorityRegister; /* Determine the number of priority bits available. First write to all possible bits. */ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; /* Read the value back to see how many bits stuck. */ ucMaxPriorityValue = *pucFirstUserPriorityRegister; /* The kernel interrupt priority should be set to the lowest priority. */ configASSERT( ucMaxPriorityValue == ( configKERNEL_INTERRUPT_PRIORITY & ucMaxPriorityValue ) ); /* Use the same mask on the maximum system call priority. */ ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue; /* Calculate the maximum acceptable priority group value for the number of bits read back. */ ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS; while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE ) { ulMaxPRIGROUPValue--; ucMaxPriorityValue <<= ( uint8_t ) 0x01; } #ifdef __NVIC_PRIO_BITS { /* Check the CMSIS configuration that defines the number of priority bits matches the number of priority bits actually queried from the hardware. */ configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS ); } #endif #ifdef configPRIO_BITS { /* Check the FreeRTOS configuration that defines the number of priority bits matches the number of priority bits actually queried from the hardware. */ configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS ); } #endif /* Shift the priority group value back to its position within the AIRCR register. */ ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT; ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK; /* Restore the clobbered interrupt priority register to its original value. */ *pucFirstUserPriorityRegister = ulOriginalPriority; } #endif /* conifgASSERT_DEFINED */ /* Make PendSV and SysTick the lowest priority interrupts. */ portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI; portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI; /* Start the timer that generates the tick ISR. Interrupts are disabled here already. */ vPortSetupTimerInterrupt(); /* Initialise the critical nesting count ready for the first task. */ uxCriticalNesting = 0; /* Start the first task. */ prvStartFirstTask(); /* Should not get here! */ return 0; } /*-----------------------------------------------------------*/ void vPortEndScheduler( void ) { /* Not implemented in ports where there is nothing to return to. Artificially force an assert. */ configASSERT( uxCriticalNesting == 1000UL ); } /*-----------------------------------------------------------*/ void vPortEnterCritical( void ) { portDISABLE_INTERRUPTS(); uxCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so assert() if it is being called from an interrupt context. Only API functions that end in "FromISR" can be used in an interrupt. Only assert if the critical nesting count is 1 to protect against recursive calls if the assert function also uses a critical section. */ if( uxCriticalNesting == 1 ) { configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 ); } } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } } /*-----------------------------------------------------------*/ __asm void xPortPendSVHandler( void ) { extern uxCriticalNesting; extern pxCurrentTCB; extern vTaskSwitchContext; PRESERVE8 mrs r0, psp isb ldr r3, =pxCurrentTCB /* Get the location of the current TCB. */ ldr r2, [r3] stmdb r0!, {r4-r11} /* Save the remaining registers. */ str r0, [r2] /* Save the new top of stack into the first member of the TCB. */ stmdb sp!, {r3, r14} mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY msr basepri, r0 dsb isb bl vTaskSwitchContext mov r0, #0 msr basepri, r0 ldmia sp!, {r3, r14} ldr r1, [r3] ldr r0, [r1] /* The first item in pxCurrentTCB is the task top of stack. */ ldmia r0!, {r4-r11} /* Pop the registers and the critical nesting count. */ msr psp, r0 isb bx r14 nop } /*-----------------------------------------------------------*/ void xPortSysTickHandler( void ) { /* The SysTick runs at the lowest interrupt priority, so when this interrupt executes all interrupts must be unmasked. There is therefore no need to save and then restore the interrupt mask value as its value is already known - therefore the slightly faster vPortRaiseBASEPRI() function is used in place of portSET_INTERRUPT_MASK_FROM_ISR(). */ vPortRaiseBASEPRI(); { /* Increment the RTOS tick. */ if( xTaskIncrementTick() != pdFALSE ) { /* A context switch is required. Context switching is performed in the PendSV interrupt. Pend the PendSV interrupt. */ portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; } } vPortClearBASEPRIFromISR(); } /*-----------------------------------------------------------*/ #if( configUSE_TICKLESS_IDLE == 1 ) __weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime ) { uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements; TickType_t xModifiableIdleTime; /* Make sure the SysTick reload value does not overflow the counter. */ if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks ) { xExpectedIdleTime = xMaximumPossibleSuppressedTicks; } /* Stop the SysTick momentarily. The time the SysTick is stopped for is accounted for as best it can be, but using the tickless mode will inevitably result in some tiny drift of the time maintained by the kernel with respect to calendar time. */ portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT; /* Calculate the reload value required to wait xExpectedIdleTime tick periods. -1 is used because this code will execute part way through one of the tick periods. */ ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) ); if( ulReloadValue > ulStoppedTimerCompensation ) { ulReloadValue -= ulStoppedTimerCompensation; } /* Enter a critical section but don't use the taskENTER_CRITICAL() method as that will mask interrupts that should exit sleep mode. */ __disable_irq(); __dsb( portSY_FULL_READ_WRITE ); __isb( portSY_FULL_READ_WRITE ); /* If a context switch is pending or a task is waiting for the scheduler to be unsuspended then abandon the low power entry. */ if( eTaskConfirmSleepModeStatus() == eAbortSleep ) { /* Restart from whatever is left in the count register to complete this tick period. */ portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG; /* Restart SysTick. */ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT; /* Reset the reload register to the value required for normal tick periods. */ portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL; /* Re-enable interrupts - see comments above __disable_irq() call above. */ __enable_irq(); } else { /* Set the new reload value. */ portNVIC_SYSTICK_LOAD_REG = ulReloadValue; /* Clear the SysTick count flag and set the count value back to zero. */ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; /* Restart SysTick. */ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT; /* Sleep until something happens. configPRE_SLEEP_PROCESSING() can set its parameter to 0 to indicate that its implementation contains its own wait for interrupt or wait for event instruction, and so wfi should not be executed again. However, the original expected idle time variable must remain unmodified, so a copy is taken. */ xModifiableIdleTime = xExpectedIdleTime; configPRE_SLEEP_PROCESSING( xModifiableIdleTime ); if( xModifiableIdleTime > 0 ) { __dsb( portSY_FULL_READ_WRITE ); __wfi(); __isb( portSY_FULL_READ_WRITE ); } configPOST_SLEEP_PROCESSING( xExpectedIdleTime ); /* Re-enable interrupts to allow the interrupt that brought the MCU out of sleep mode to execute immediately. see comments above __disable_interrupt() call above. */ __enable_irq(); __dsb( portSY_FULL_READ_WRITE ); __isb( portSY_FULL_READ_WRITE ); /* Disable interrupts again because the clock is about to be stopped and interrupts that execute while the clock is stopped will increase any slippage between the time maintained by the RTOS and calendar time. */ __disable_irq(); __dsb( portSY_FULL_READ_WRITE ); __isb( portSY_FULL_READ_WRITE ); /* Disable the SysTick clock without reading the portNVIC_SYSTICK_CTRL_REG register to ensure the portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set. Again, the time the SysTick is stopped for is accounted for as best it can be, but using the tickless mode will inevitably result in some tiny drift of the time maintained by the kernel with respect to calendar time*/ portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT ); /* Determine if the SysTick clock has already counted to zero and been set back to the current reload value (the reload back being correct for the entire expected idle time) or if the SysTick is yet to count to zero (in which case an interrupt other than the SysTick must have brought the system out of sleep mode). */ if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 ) { uint32_t ulCalculatedLoadValue; /* The tick interrupt is already pending, and the SysTick count reloaded with ulReloadValue. Reset the portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick period. */ ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG ); /* Don't allow a tiny value, or values that have somehow underflowed because the post sleep hook did something that took too long. */ if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) ) { ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ); } portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue; /* As the pending tick will be processed as soon as this function exits, the tick value maintained by the tick is stepped forward by one less than the time spent waiting. */ ulCompleteTickPeriods = xExpectedIdleTime - 1UL; } else { /* Something other than the tick interrupt ended the sleep. Work out how long the sleep lasted rounded to complete tick periods (not the ulReload value which accounted for part ticks). */ ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG; /* How many complete tick periods passed while the processor was waiting? */ ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick; /* The reload value is set to whatever fraction of a single tick period remains. */ portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements; } /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again, then set portNVIC_SYSTICK_LOAD_REG back to its standard value. */ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT; vTaskStepTick( ulCompleteTickPeriods ); portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL; /* Exit with interrpts enabled. */ __enable_irq(); } } #endif /* #if configUSE_TICKLESS_IDLE */ /*-----------------------------------------------------------*/ /* * Setup the SysTick timer to generate the tick interrupts at the required * frequency. */ #if( configOVERRIDE_DEFAULT_TICK_CONFIGURATION == 0 ) void vPortSetupTimerInterrupt( void ) { /* Calculate the constants required to configure the tick interrupt. */ #if( configUSE_TICKLESS_IDLE == 1 ) { ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ); xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick; ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ ); } #endif /* configUSE_TICKLESS_IDLE */ /* Stop and clear the SysTick. */ portNVIC_SYSTICK_CTRL_REG = 0UL; portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; /* Configure SysTick to interrupt at the requested rate. */ portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL; portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT ); } #endif /* configOVERRIDE_DEFAULT_TICK_CONFIGURATION */ /*-----------------------------------------------------------*/ __asm uint32_t vPortGetIPSR( void ) { PRESERVE8 mrs r0, ipsr bx r14 } /*-----------------------------------------------------------*/ #if( configASSERT_DEFINED == 1 ) void vPortValidateInterruptPriority( void ) { uint32_t ulCurrentInterrupt; uint8_t ucCurrentPriority; /* Obtain the number of the currently executing interrupt. */ ulCurrentInterrupt = vPortGetIPSR(); /* Is the interrupt number a user defined interrupt? */ if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER ) { /* Look up the interrupt's priority. */ ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ]; /* The following assertion will fail if a service routine (ISR) for an interrupt that has been assigned a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API function. ISR safe FreeRTOS API functions must *only* be called from interrupts that have been assigned a priority at or below configMAX_SYSCALL_INTERRUPT_PRIORITY. Numerically low interrupt priority numbers represent logically high interrupt priorities, therefore the priority of the interrupt must be set to a value equal to or numerically *higher* than configMAX_SYSCALL_INTERRUPT_PRIORITY. Interrupts that use the FreeRTOS API must not be left at their default priority of zero as that is the highest possible priority, which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY, and therefore also guaranteed to be invalid. FreeRTOS maintains separate thread and ISR API functions to ensure interrupt entry is as fast and simple as possible. The following links provide detailed information: http://www.freertos.org/RTOS-Cortex-M3-M4.html http://www.freertos.org/FAQHelp.html */ configASSERT( ucCurrentPriority >= ucMaxSysCallPriority ); } /* Priority grouping: The interrupt controller (NVIC) allows the bits that define each interrupt's priority to be split between bits that define the interrupt's pre-emption priority bits and bits that define the interrupt's sub-priority. For simplicity all bits must be defined to be pre-emption priority bits. The following assertion will fail if this is not the case (if some bits represent a sub-priority). If the application only uses CMSIS libraries for interrupt configuration then the correct setting can be achieved on all Cortex-M devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the scheduler. Note however that some vendor specific peripheral libraries assume a non-zero priority group setting, in which cases using a value of zero will result in unpredictable behaviour. */ configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue ); } #endif /* configASSERT_DEFINED */ 解析代码
最新发布
11-13
<think> 我们正在分析FreeRTOS内核代码,特别是任务调度、中断处理和滴答定时器配置。以下将结合代码和引用内容进行解析。 注意:由于代码量巨大,我们只关注核心部分。 1. 任务调度 FreeRTOS使用优先级抢占式调度。在tasks.c中,调度器启动函数`vTaskStartScheduler()`负责初始化系统并启动调度。 引用[1]提到,配置`configUSE_PREEMPTION`和`configUSE_TIME_SLICING`控制调度行为。 关键函数: - `vTaskStartScheduler()`: 创建空闲任务,启动滴答定时器,然后调用`xPortStartScheduler()`(硬件相关)启动调度。 - `xPortStartScheduler()`: 在port.c中实现,配置SysTick定时器中断并触发第一个任务切换。 2. 滴答定时器(SysTick) 滴答定时器是系统的心跳,用于任务延时和超时管理。在`vTaskStartScheduler()`中,会配置SysTick定时器以固定频率中断(由`configTICK_RATE_HZ`配置)。 每次SysTick中断会调用`xTaskIncrementTick()`函数。该函数更新系统时间,检查是否有任务需要解除阻塞,并判断是否需要切换任务。 关键代码片段(tasks.c中): ```c void xTaskIncrementTick(void) { TickType_t xConstTickCount = ++xTickCount; // 更新系统时钟 if (xConstTickCount == 0) { // 处理滴答计数器溢出 taskSWITCH_DELAYED_LISTS(); // 交换延迟任务列表 } // 检查是否有任务需要解除阻塞 if (xConstTickCount >= xNextTaskUnblockTime) { while (/* 存在需要解除阻塞的任务 */) { // 将任务从阻塞列表移动到就绪列表 } } // 判断是否需要切换任务(高优先级任务就绪) if (/* 需要切换任务 */) { xYieldPending = pdTRUE; } } ``` 3. 中断处理 FreeRTOS使用PendSV中断进行上下文切换。在SysTick中断(滴答中断)中,如果发现需要切换任务,会触发PendSV中断。 在PendSV中断处理函数中,进行实际的任务上下文切换。 关键代码(port.c中,以Cortex-M为例): ```c void SysTick_Handler(void) { // 进入中断 if (xTaskIncrementTick() != pdFALSE) { // 返回非0表示需要切换任务 portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; // 触发PendSV } } void PendSV_Handler(void) { vTaskSwitchContext(); // 选择下一个要运行的任务 // 硬件上下文切换(汇编实现) } ``` 4. 任务切换 `vTaskSwitchContext()`函数(在tasks.c中)负责选择下一个要运行的任务。它从就绪列表中找到最高优先级的任务,然后更新`pxCurrentTCB`。 关键代码: ```c void vTaskSwitchContext(void) { // 如果调度器挂起则不切换 if (uxSchedulerSuspended != (UBaseType_t)pdFALSE) { xYieldPending = pdTRUE; return; } // 找到最高优先级就绪任务 taskSELECT_HIGHEST_PRIORITY_TASK(); traceTASK_SWITCHED_IN(); } ``` 5. 任务创建 如引用[1]所述,任务创建通过`xTaskCreate()`函数完成。该函数分配TCB和栈空间,并初始化任务状态,然后将任务加入就绪列表。 6. 任务通知(引用[3]) 任务通知是一种轻量级通信机制。通过`xTaskNotifyGive()`或`xTaskNotify()`发送通知,任务通过`ulTaskNotifyTake()`或`xTaskNotifyWait()`接收。 在任务控制块(TCB)中,使用`ulNotifiedValue`和`ucNotifyState`字段管理通知状态。 7. 消息队列(引用[4]) 消息队列在queue.c中实现。当任务或中断服务程序向队列发送消息时,如果队列已空且有任务在等待接收,则唤醒阻塞的任务(最高优先级)。 总结: FreeRTOS内核通过滴答定时器中断驱动任务调度,利用优先级就绪列表管理任务,通过PendSV中断实现上下文切换。任务间通信提供了队列和任务通知等机制。 §§相关问题§§ 1. FreeRTOS中如何实现任务优先级反转解决机制? 2. 任务栈溢出检测的原理和实现方式是什么? 3. FreeRTOS的`queue.c`与`tasks.c`如何协作实现任务间通信? 4. 在ARM Cortex-M架构中,上下文切换的具体硬件操作是怎样的? </think> ### FreeRTOS内核代码解析 #### 1. **任务调度机制** FreeRTOS采用**抢占式优先级调度**,核心逻辑在`vTaskSwitchContext()`函数中实现: ```c void vTaskSwitchContext(void) { if( uxSchedulerSuspended != pdFALSE ) return; // 调度器挂起检查 taskSELECT_HIGHEST_PRIORITY_TASK(); // 选择最高优先级任务 /* 更新当前任务TCB指针 */ pxCurrentTCB = listGET_OWNER_OF_HEAD_ENTRY( pxReadyTasksLists[ uxTopReadyPriority ] ); } ``` **关键点**: - `uxTopReadyPriority`:位图变量,快速定位最高优先级就绪任务(时间复杂度$O(1)$) - 调度触发场景: - SysTick中断(时间片轮转) - 任务阻塞/唤醒 - 主动调用`taskYIELD()` - 同优先级任务使用**时间片轮转**(需`configUSE_TIME_SLICING=1`)[^1] #### 2. **滴答定时器(SysTick)配置** 系统时钟由`xTaskIncrementTick()`管理: ```c BaseType_t xTaskIncrementTick(void) { TickType_t xConstTickCount = ++xTickCount; if( xConstTickCount == 0 ) taskSWITCH_DELAYED_LISTS(); // 处理计数器溢出 // 检查延迟任务唤醒 if( xConstTickCount >= xNextTaskUnblockTime ) { while( /* 存在需唤醒任务 */ ) { prvUnblockTask( pxTCB ); // 解除任务阻塞 } } #if configUSE_PREEMPTION == 1 if( xYieldPending != pdFALSE ) return pdTRUE; // 请求上下文切换 #endif } ``` **时钟管理机制**: - `xTickCount`:全局滴答计数器 - `xNextTaskUnblockTime`:记录下一个待唤醒任务的时间点 - 通过`configTICK_RATE_HZ`配置时钟频率(典型值1-1000Hz)[^1] #### 3. **中断处理流程** 中断服务程序(ISR)标准模板: ```c void xInterruptHandler(void) { portSAVE_CONTEXT(); // 保存当前任务上下文 /* 中断处理逻辑 */ if( xHigherPriorityTaskWoken == pdTRUE ) portYIELD_FROM_ISR(); // 触发后续调度 portRESTORE_CONTEXT(); // 恢复上下文 } ``` **关键API**: - `portYIELD_FROM_ISR()`:触发PendSV中断执行上下文切换 - `xTaskResumeFromISR()`:从中断唤醒挂起任务 - 中断优先级配置要求: - SysTick和PendSV必须为最低优先级 - 高优先级中断不可调用FreeRTOS API[^2] #### 4. **任务状态管理** 状态转换核心函数: ```c // 任务挂起 void vTaskSuspend( TaskHandle_t xTask ) { vListRemove( &( pxTCB->xStateListItem ) ); // 移出就绪列表 vListInsertEnd( &xSuspendedTaskList, ... ); // 加入挂起列表 } // 任务恢复 void vTaskResume( TaskHandle_t xTask ) { if( prvIsTaskSuspended( pxTCB ) ) prvAddTaskToReadyList( pxTCB ); // 恢复就绪状态 } ``` **状态列表**: - `pxReadyTasksLists[]`:按优先级分组的就绪任务 - `xDelayedTaskList`:阻塞任务(时间相关) - `xSuspendedTaskList`:手动挂起任务 - `xPendingReadyList`:调度器挂起时的待就绪任务[^2] #### 5. **任务通知机制** 轻量级通信实现(替代队列): ```c // 发送通知 BaseType_t xTaskGenericNotify( TaskHandle_t xTask, uint32_t ulValue, eNotifyAction eAction ) { pxTCB->ulNotifiedValue = /* 按eAction更新值 */; if( pxTCB->ucNotifyState == taskWAITING_NOTIFICATION ) prvUnblockTask( pxTCB ); // 唤醒等待任务 } // 接收通知 uint32_t ulTaskNotifyTake( BaseType_t xClearCount, TickType_t xTicksToWait ) { if( pxCurrentTCB->ulNotifiedValue == 0 ) vTaskSuspend(); // 进入阻塞 return pxCurrentTCB->ulNotifiedValue; } ``` 优势:比队列节省内存(无需创建独立队列对象)[^3] #### 6. **消息队列协作机制** 队列与任务调度协作流程: ```c // queue.c 中的发送操作 BaseType_t xQueueGenericSend(...) { if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) { xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ); // 唤醒接收任务 } } // tasks.c 中的任务唤醒 void vTaskPlaceOnEventList( List_t *pxEventList, TickType_t xTicksToWait ) { vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) ); // 加入事件列表 prvAddCurrentTaskToDelayedList( xTicksToWait ); // 进入阻塞状态 } ``` 队列通过任务事件列表项`xEventListItem`与调度器交互[^4]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值