在 △ A B C \triangle ABC △ABC 中, D D D, F F F, G G G 分别为 A B AB AB, A C AC AC, B C BC BC 三边中点. 过点 C C C 且切 A B AB AB 于点 D D D 的圆交分别交 A B AB AB, A C AC AC 于 H H H, I I I. H H H 关于 F F F 的对称点为 H ′ H' H′, I I I 关于 G G G 的对称点为 I ′ I' I′. F G FG FG, H ′ I ′ H'I' H′I′ 交于 M M M, C M CM CM 交于 P P P. Q Q Q 为 H ′ I ′ H'I' H′I′ 与 C D CD CD 的交点. 求证: Q P = Q C QP=QC QP=QC.
证明:
显然, D F / / B C DF//BC DF//BC, D G / / A C DG//AC DG//AC, F G / / A B FG//AB FG//AB. △ B D I ∼ △ B C D \triangle BDI\sim \triangle BCD △BDI∼△BCD, △ A D H ∼ △ A C D \triangle ADH\sim \triangle ACD △ADH∼△ACD.
延长 D F DF DF 交 H ′ I ′ H'I' H′I′ 于 X X X, 延长 D G DG DG 交 H ′ I ′ H'I' H′I′ 于 Y Y Y.
证明 X X X 在 ( H D I ) (HDI) (HDI) 上:
只需证: F X ⋅ F D = F H ⋅ F C FX \cdot FD=FH \cdot FC FX⋅FD=FH⋅FC
F X = F H ′ / C H ′ ⋅ C I ′ FX=FH'/CH' \cdot CI' FX=FH′/CH′⋅CI′
只需证: C I ′ / C H ′ = F C / F D CI'/CH' =FC/FD CI′/CH′=FC/FD ⟺ \iff ⟺ C I ′ / C H ′ = A C / B C CI'/CH'=AC/BC CI′/CH′=AC/BC
C I ′ / C H ′ = B I / A H = B I / B D A H / A D = sin ∠ B D I / sin ∠ B I D sin ∠ A D H / sin ∠ A H D = sin ∠ D C B sin ∠ D C A = A C B C CI'/CH'=BI/AH=\frac{BI/BD}{AH/AD}=\frac{\sin \angle BDI/\sin \angle BID}{\sin \angle ADH/\sin \angle AHD}=\frac{\sin \angle DCB}{\sin \angle DCA}=\frac{AC}{BC} CI′/CH′=BI/AH=AH/ADBI/BD=sin∠ADH/sin∠AHDsin∠BDI/sin∠BID=sin∠DCAsin∠DCB=BCAC, 因此 X X X 在 ( D H I ) (DHI) (DHI) 上.
( sin ∠ D C B sin ∠ D C A = S △ D C B / B C S D C A / A C = A C B C \frac{\sin \angle DCB}{\sin \angle DCA}=\frac{S_{\triangle DCB}/BC}{S_{DCA}/AC}=\frac{AC}{BC} sin∠DCAsin∠DCB=SDCA/ACS△DCB/BC=BCAC)
可类似地证明 Y Y Y 也在 ( H D I ) (HDI) (HDI) 上.
∠ H ′ I ′ C = ∠ D X Y = ∠ B D G = ∠ B A C \angle H'I'C=\angle DXY=\angle BDG=\angle BAC ∠H′I′C=∠DXY=∠BDG=∠BAC
所以 H ′ H' H′, I ′ I' I′, B B B, A A A 共圆.
设过 H ′ H' H′, I ′ I' I′, C C C 的圆交 ( H D I ) (HDI) (HDI) 于 P ′ P' P′, C C C.
F H ⋅ F C = F H ′ ⋅ F A FH\cdot FC=FH'\cdot FA FH⋅FC=FH′⋅FA, G I ⋅ G C = G I ′ ⋅ G B GI \cdot GC=GI'\cdot GB GI⋅GC=GI′⋅GB, 所以 F F F, G G G 在 ( A B I ′ H ′ ) (ABI'H') (ABI′H′) 和 ( H D I ) (HDI) (HDI) 的根轴上.
由根心定理, F G FG FG, H ′ I ′ H'I' H′I′, C P ′ CP' CP′ 共点 ( M M M), 进而可知 P ′ P' P′ 即为 P P P.
∠ M F X = ∠ D F G = ∠ G Y X \angle MFX=\angle DFG=\angle GYX ∠MFX=∠DFG=∠GYX, 所以 F F F, X X X, Y Y Y, G G G 四点共圆.
M F ⋅ M G = M X ⋅ M Y = M C ⋅ M P MF \cdot MG=MX \cdot MY=MC \cdot MP MF⋅MG=MX⋅MY=MC⋅MP, 因此 F F F, G G G, C C C, P P P 共圆.
分别设 ( H D I ) (HDI) (HDI) 和 ( H ′ I ′ C ) (H'I'C) (H′I′C) 的圆心为 O 1 O_1 O1, O 2 O_2 O2.
易知 △ C H ′ I ′ ∼ △ D Y X \triangle CH'I' \sim \triangle DYX △CH′I′∼△DYX. ∠ Q C I ′ = ∠ F D C \angle QCI'=\angle FDC ∠QCI′=∠FDC, △ I ′ O 1 H ′ ∼ △ X O 2 Y \triangle I'O_1H' \sim \triangle XO_2Y △I′O1H′∼△XO2Y, 由此可知 Q I ′ / Q H ′ = Q X / Q Y QI'/QH'=QX/QY QI′/QH′=QX/QY, 即 Q I ′ / Q X = Q H ′ / Q Y QI'/QX=QH'/QY QI′/QX=QH′/QY.
由此易知 △ X O 2 Q ∼ △ I ′ O 1 Q \triangle XO_2Q \sim \triangle I'O_1Q △XO2Q∼△I′O1Q, △ Y O 2 Q ∼ △ H ′ O 1 Q \triangle YO_2Q \sim \triangle H'O_1Q △YO2Q∼△H′O1Q. 进而 ∠ O 2 Q X = ∠ O 1 Q I ′ \angle O_2QX=\angle O_1QI' ∠O2QX=∠O1QI′, O 1 O_1 O1, Q Q Q, O 2 O_2 O2 共线.
显然 O 1 O 2 O_1O_2 O1O2 垂直平分 P C PC PC, 由此可知 Q P = Q C QP=QC QP=QC.
拓展: 还可以证明以下结论:
设 C D CD CD 交之于 C C C, Z Z Z.
∠ F P M = ∠ F G C = ∠ I ′ H ′ C = ∠ F H ′ M \angle FPM=\angle FGC=\angle I'H'C=\angle FH'M ∠FPM=∠FGC=∠I′H′C=∠FH′M, 所以 F F F, H ′ H' H′, P P P, M M M 共圆.
∠ F Z C = ∠ F G C = ∠ Q H ′ C \angle FZC=\angle FGC=\angle QH'C ∠FZC=∠FGC=∠QH′C, 所以 Z Z Z, F F F, H ′ H' H′, Q Q Q 共圆.
所以 C Q ⋅ C Z = C F ⋅ C H ′ = C M ⋅ C P CQ\cdot CZ=CF\cdot CH'=CM\cdot CP CQ⋅CZ=CF⋅CH′=CM⋅CP, 进而 Z Z Z, Q Q Q, P P P, M M M 共圆.
2025年1月9日