【影像组学pyradiomics教程】 (二) pyradiomics 使用示例

本文详细介绍使用pyradiomics库进行影像组学特征提取的过程。包括配置文件设置、图像及标签文件准备、Python代码实现等关键步骤。适用于医学影像分析初学者及专业人士。
部署运行你感兴趣的模型镜像

本系列博客后续将更新于个人微信公众号,欢迎关注。

代码:

import radiomics
import radiomics.featureextractor as FEE

# 文件名
main_path =  '.'
ori_name = r'\brain1_image.nrrd'
lab_name = r'\brain1_label.nrrd'
para_name = r'\Params.yaml'

# 文件全部路径
ori_path = main_path + ori_name  
lab_path = main_path + lab_name
para_path = main_path + para_name
print("originl path: " + ori_path)
print("label path: " + lab_path)
print("parameter path: " + para_path)

# 使用配置文件初始化特征抽取器
extractor = FEE.RadiomicsFeaturesExtractor(para_path)
print ("Extraction parameters:\n\t", extractor.settings)
print ("Enabled filters:\n\t", extractor._enabledImagetypes)
print ("Enabled features:\n\t", extractor._enabledFeatures)

# 运行
result = extractor.execute(ori_path,lab_path)  #抽取特征
print ("Result type:", type(result))  # result is returned in a Python ordered dictionary
print ("")
print ("Calculated features")
for key, value in result.items():  #输出特征
    print ("\t", key, ":", value)

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 92
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值