文章目录
randperm
-
Returns a random permutation of integers from
0ton - 1.-
Parameters
-
n (int) – the upper bound (exclusive)
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor. Default:torch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor. Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_tensor_type()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False.
Example:
>>> torch.randperm(4) tensor([2, 1, 0, 3])
-
torch.
randperm
(
n,
out=None,
dtype=torch.int64,
layout=torch.strided,
device=None,
requires_grad=False
) → LongTensor
PyTorch的randperm函数详解
本文详细介绍了PyTorch中randperm函数的使用方法,包括参数解释、默认设置及示例代码。该函数用于生成指定范围内的随机排列张量,适用于深度学习和数据科学中的各种场景。
1434

被折叠的 条评论
为什么被折叠?



