一、函数模板
1.函数模板概念
函数模板不是一个实在的函数,编译器不能为其生成可执行代码。定义函数模板后只是一个对函数功能框架的描述,当它具体执行时,将根据传递的实际参数决定其功能。
函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。
2.函数模板格式
template<typename T1, typename T2,…,typename Tn>
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
template<class T>
void swap(T& left, T& right)
{
T temp = left;
left = right;
right = temp;
}
int main()
{
int a = 10;
int b = 20;
swap(a, b);
std::cout << a << " " << b << std::endl;
double c = 1.0;
double d = 2.0;
std::cout << c << " " << d << std::endl;
swap(c, d);
char e = 'a';
char f = 'b';
swap(e, f);
std::cout << e << " " << f << std::endl;
return 0;
}
可以看到三种数据都被交换了,此处的typename也可以用class来代替
3.原理
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。
4.函数模板的实例化
用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。
1.隐式实例化:让编译器根据实参推演模板参数的实际类型
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
template<class T>
T Add(const T& left, const T& right)
{
return left + right;
}
int main()
{
int a = 10;
int b = 20;
double c = 10.0;
double d = 20.0;
std::cout << Add(a, b) << std::endl;
std::cout << Add(c, d) << std::endl;
return 0;
}
而且这两次调用的函数地址不同
如果在代码中加上Add(a,c)结果会怎么样呢
该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型。
通过实参a将T推演为int,通过实参c将T推演为double类型,但模板参数列表中只有一个T,编译 器无法确定此处到底该将T确定为int 或者 double类型而报错。
注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
想要结局的话需要Add(a,(int)c)这样子修改
2.显式实例化:在函数名后的<>中指定模板参数的实际类型
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
template<class T>
T Add(const T& left, const T& right)
{
return left + right;
}
int main()
{
int a = 10;
double d = 20.0;
//显示实例化
std::cout << Add<int>(a, d) << std::endl;
std::cout << Add<double>(a, d) << std::endl;
return 0;
}
在编译器中,当同时遇到自己写的和模版中给的时候,会先调用自己所写的!
普通的函数会进行自动转换,但是模版不可以!