Build a tree
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 556 Accepted Submission(s): 178
Problem Description
HazelFan wants to build a rooted tree. The tree has
n
nodes labeled
0
to
n−1
, and the father of the node labeled
i
is the node labeled
⌊i−1k⌋
. HazelFan wonders the size of every subtree, and you just need to tell him the XOR value of these answers.
Input
The first line contains a positive integer
T(1≤T≤5)
, denoting the number of test cases.
For each test case:
A single line contains two positive integers n,k(1≤n,k≤1018) .
For each test case:
A single line contains two positive integers n,k(1≤n,k≤1018) .
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
A single line contains a nonnegative integer, denoting the answer.
Sample Input
2 5 2 5 3
Sample Output
7 6
Source
————————————————————————————————————
有一棵n个点的有根树,标号为0到n−1,i号点的父亲是⌊ki−1⌋号点,求所有子树大小的异或和。
这是一棵完全k叉树,考虑根的所有孩子,最多只有一个不是满k叉树,对这个孩子进行递归处理即可,剩下的可以直接算出来。k>1时只有log层,直接做就到底就好了,k=1时要特判
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
#include <set>
#include <algorithm>
#include <complex>
#include <vector>
#include <bitset>
#include <stack>
#include <queue>
#include <unordered_map>
#include <functional>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
LL n,k;
LL ans;
LL llpow(LL x, LL y)
{
LL ans = 1;
while(y >= 1)
{
if(y & 1)
{
ans *= x;
}
x *= x;
y >>= 1;
}
return ans;
}
void fff(LL x)
{
if(x < 1)
return;
ans ^= x;
if(k % 2 == 0)
{
LL nn = x, p = 1, cs = 1;
nn--;
while(nn - p * k >= 0) p *= k, nn -= p, cs++;
if(nn == 0)
{
return;
}
LL t = llpow(k, cs - 1);
LL tt = nn / t;
if(nn % t == 0)
{
if(tt % 2 != 0)
{
fff((x - nn - 1) / k + t);
fff((x - nn - 1) / k);
}
}
else
{
if(tt % 2 != 0)
{
fff((x - nn - 1) / k + t);
fff((x - nn - 1) / k + nn % t);
}
else
{
fff((x - nn - 1) / k + nn % t);
fff((x - nn - 1) / k);
}
}
}
else
{
LL nn = x, p = 1, cs = 1;
nn--;
while(nn - p * k >= 0) p *= k, nn -= p, cs++;
if(nn == 0)
{
fff((x - 1) / k);
return;
}
LL t = llpow(k, cs - 1);
LL tt = nn / t;
if(nn % t == 0)
{
if(tt % 2 != 0)
{
fff((x - nn - 1) / k + t);
}
else
{
fff((x - nn - 1) / k);
}
}
else
{
if(tt % 2 != 0)
{
fff((x - nn - 1) / k);
fff((x - nn - 1) / k + t);
fff((x - nn - 1) / k + nn % t);
}
else
{
fff((x - nn - 1) / k + nn % t);
}
}
}
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld %lld",&n,&k);
if(k==1)
{
if(n%4==0) printf("%lld\n",n);
else if(n%4==1) printf("1\n");
else if(n%4==2) printf("%lld\n",n+1LL);
else printf("0\n");
continue;
}
ans = 0;
fff(n);
printf("%lld\n", ans);
}
return 0;
}

本文探讨了一种特殊的完全k叉树构建方法,并通过递归算法求解该树中每个子树大小的异或和问题。特别针对k为奇数和偶数的情况进行了讨论。
489

被折叠的 条评论
为什么被折叠?



