Hdu6055 Regular polygon(2017多校第2场)

本文介绍了一种通过枚举整数点集中的点来检测正多边形的算法,特别关注于正方形的检测。该算法适用于平面坐标系内的点集,并详细展示了如何通过检查对角线来确定是否存在构成正多边形的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Regular polygon

                                                                           Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
                                                                                                        Total Submission(s): 986    Accepted Submission(s): 366


Problem Description
On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
 

Input
The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
 

Output
For each case, output a number means how many different regular polygon these points can make.
 

Sample Input
  
4 0 0 0 1 1 0 1 1 6 0 0 0 1 1 0 1 1 2 0 2 1
 

Sample Output
  
1 2
 

Source
 

Recommend
liuyiding

—————————————————————————————————

题目的意思是给出n个整点,判有多少个正多边形

思路:只可能正方形,枚举对角线,判剩下的点存不存在

注意:算出来的点可能越界

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>

using namespace std;
#define LL long long

const int INF = 0x3f3f3f3f;
const LL mod = 1e9 + 7;

struct point
{
    int x,y;
} p[505];

int n;
int vis[205][205];

int main()
{
    while(~scanf("%d",&n))
    {
        memset(vis,0,sizeof vis);
        for(int i=1; i<=n; i++)
        {
            scanf("%d%d",&p[i].x,&p[i].y);
            vis[p[i].x+100][p[i].y+100]=1;
        }
        int ans=0;
        for(int i=1; i<=n; i++)
        {
            for(int j=i+1; j<=n; j++)
            {
                point tmp;
                tmp.x=(p[i].x+p[j].x+p[j].y-p[i].y);
                tmp.y=(p[i].y+p[j].y+p[i].x-p[j].x);
                if(tmp.x%2!=0||tmp.y%2!=0) continue;
                tmp.x/=2,tmp.y/=2;
                if(tmp.x < -100 || tmp.x > 100 || tmp.y < -100 || tmp.y > 100 || !vis[tmp.x+100][tmp.y+100]) continue;
                tmp.x=(p[i].x+p[j].x+p[i].y-p[j].y);
                tmp.y=(p[i].y+p[j].y+p[j].x-p[i].x);
                if(tmp.x%2!=0||tmp.y%2!=0) continue;
                tmp.x/=2,tmp.y/=2;
                if(tmp.x < -100 || tmp.x > 100 || tmp.y < -100 || tmp.y > 100 || !vis[tmp.x+100][tmp.y+100]) continue;
                ans++;
            }
        }
        printf("%d\n",ans/2);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值