Codeforces831D Office Keys

D. Office Keys
time limit per test
 2 seconds
memory limit per test
 256 megabytes
input
 standard input
output
 standard output

There are n people and k keys on a straight line. Every person wants to get to the office which is located on the line as well. To do that, he needs to reach some point with a key, take the key and then go to the office. Once a key is taken by somebody, it couldn't be taken by anybody else.

You are to determine the minimum time needed for all n people to get to the office with keys. Assume that people move a unit distance per 1 second. If two people reach a key at the same time, only one of them can take the key. A person can pass through a point with a key without taking it.

Input

The first line contains three integers nk and p (1 ≤ n ≤ 1 000n ≤ k ≤ 2 0001 ≤ p ≤ 109) — the number of people, the number of keys and the office location.

The second line contains n distinct integers a1, a2, ..., an (1 ≤ ai ≤ 109) — positions in which people are located initially. The positions are given in arbitrary order.

The third line contains k distinct integers b1, b2, ..., bk (1 ≤ bj ≤ 109) — positions of the keys. The positions are given in arbitrary order.

Note that there can't be more than one person or more than one key in the same point. A person and a key can be located in the same point.

Output

Print the minimum time (in seconds) needed for all n to reach the office with keys.

Examples
input
2 4 50
20 100
60 10 40 80
output
50
input
1 2 10
11
15 7
output
7
Note

In the first example the person located at point 20 should take the key located at point 40 and go with it to the office located at point 50. He spends 30 seconds. The person located at point 100 can take the key located at point 80 and go to the office with it. He spends 50seconds. Thus, after 50 seconds everybody is in office with keys.

——————————————————————————————————
题目的意思是在一条直线上给出n个人的位置和m把钥匙的位置和一个办公室位置,求每个人拿了钥匙进办公室最少时间,每把钥匙只能被一个人拿
思路:先排序,再二分时间,验证能否在这个时间都进办公室,验证时可以贪心尽可能让每个人拿左边钥匙

 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
 
using namespace std;
 
#define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 2000010
 
LL a[100005],b[100005];
LL p;
int n,m;
bool ok(LL mid)
{
    int l=0,r=0;
    while(l<n&&r<m)
    {
        if(fabs(a[l]-b[r])+fabs(p-b[r])<=mid)
            l++,r++;
        else
            r++;
    }
    if(l==n) return 1;
    return 0;
}
 
int main()
{
 
    scanf("%d%d%lld",&n,&m,&p);
    for(int i=0; i<n; i++)
        scanf("%lld",&a[i]);
    for(int j=0; j<m; j++)
        scanf("%lld",&b[j]);
    sort(a,a+n);
    sort(b,b+m);
    LL l=0,r=100000000000;
    LL ans;
    while(l<=r)
    {
        LL mid=(l+r)/2;
        if(ok(mid)) r=mid-1,ans=mid;
        else l=mid+1;
    }
    printf("%lld\n",ans);
    return 0;
}

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值