论文地址:DSOD
由于深度学习需要大量的训练数据,而针对特定任务需求的训练样本往往是有限的,通常情况下,目标检测算法会先使用在海量数据(如ImageNet数据集)上训练好的分类模型对需要训练的网络参数进行初始化(pre-train,预训练),然后使用训练样本对网络参数进行微调(fine-tune)。
但这种预训练结合微调的方法存在以下几点问题:(1)对于目标检测任务而言,由于其损失函数和目标类别分布与分类模型存在差异,其搜索/优化空间是不同的,所以使用预训练模型容易求得局部而非全局最优解。虽然利用训练数据对网络进行微调可以在一定程度上缓解这种现象,但仍然不能从本质上解决问题。(2)预训练模型一般是基于RGB图像训练得到的,对于差异较大的问题域,如针对深度图像、多光谱图像和医学影像的目标检测,要从预训练的分类模型迁移学习为目标检测模型难度非常大。(3)预训练的分类模型通常具有较为复杂的网络结构,不仅参数规模大,其特定的网络结构也限制了目标检测模型的设计空间,难以对模型的结构进行灵活地调整。
因此,这篇文章提出了一种无需预训练,直接基于训练样本来训练目标检测模型的方法。
算法框架
网络可以分为两个部分:用于特征提取的backbone sub-network和用于预测的front-end sub-network。backbone sub-network使用的是DenseNets的变形,含有一个stem block,4个dense block,2个t