AI算法机器学习主要类型

1. 什么是机器学习?

机器学习(Machine Learning)是人工智能的一个分支,其核心思想是让计算机通过分析数据自动“学习”规律,并利用这些规律对未知数据进行预测或决策。与传统编程不同,机器学习不是由人明确写出规则,而是从数据中自动归纳出模型。


2. 机器学习的主要类型

🟢 监督学习(Supervised Learning)
  • 定义:使用带有标签的数据进行训练,模型学习输入特征与输出标签之间的映射关系。
  • 任务类型
    • 分类(Classification):预测离散的类别(如垃圾邮件/非垃圾邮件)。
    • 回归(Regression):预测连续值(如房价、温度)。
  • 常用算法
    • 线性回归、逻辑回归
    • 支持向量机(SVM)
    • 决策树、随机森林
    • K近邻(KNN)
    • 神经网络
🔵 无监督学习(Unsupervised Learning)
  • 定义:使用没有标签的数据进行训练,模型试图发现数据中的结构或模式。
  • 任务类型
    • 聚类(Clustering):将相似的数据分组(如用户分群)。
    • 降维(Dimensionality Reduction):压缩数据维度,保留主要信息。
    • 异常检测(Anomaly Detection):识别异常样本。
  • 常用算法
    • K均值聚类(K-Means)
    • 主成分分析(PCA)
    • 自编码器(Autoencoder)
🟡 半监督学习(Semi-Supervised Learning)
  • 定义:结合少量有标签数据和大量无标签数据进行训练。
  • 适用场景:当标注数据成本较高时(如医疗图像标注)。
  • 优势:在数据稀缺的情况下仍能获得较好的模型性能
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香蕉可乐荷包蛋

努力写有用的code

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值