前段时间,几个朋友私信我:
简历投了千百份,面了4~5家,全挂在最后一轮。是不是不会面试?
其实,他的问题我太熟悉了:简历没亮点、问到细节就卡壳、知识体系没补全……后来我把自己准备面试时沉淀下来的方法给他,他两周后就拿到 offer。
我干脆把这些东西整理成了一个「Java高级开发面试急救包」,给所有正在面试路上挣扎的人。不一定保证你100% 过,但一定能让你少踩坑。
这份 知识盲点清单 + 模拟面试实战 的资料包,你能收获什么?👇
- ✨【高并发】限流(IP、用户、应用)、熔断(错误率、流量基数、响应延迟)、降级(自动、手动、柔性)
- ✨【高性能】红包金额预拆分、Redis 多级缓存、大 Key/热 Key 拆分与散列、映射关系+本地缓存、并发队列(LinkedBlockingQueue)、Redis Pipeline 批量操作、异步化(MQ 消息、日志入库、风控防刷)、线程池优化(任务类型、拒绝策略)、RocketMQ 零丢失机制(Half 消息、本地事务回查、同步刷盘、DLedger)、幂等消费、分布式锁(Redisson 看门狗、RedLock 算法)、Redis 集群缩容与数据迁移、分批入库
- ✨【海量数据处理】日志分表分片(按年月分表、奇偶分片)、分片键设计(年月前缀+雪花算法)、跨表查询(Sharding-JDBC、离线数仓)、冷热数据分层(业务库存热点、数仓做统计分析)、大数据引擎(Hive、ClickHouse、Doris、SparkSQL、Flink)
- ✨【服务器选型】MySQL(8 核 CPU 保证线程独立、内存 50%–80% 给 Buffer Pool、ESSD 云盘 IOPS 6K–5W、100MB/s 带宽)、Redis(4–8 核高主频、内存 70%–80% 分配+预留 fork 空间、SSD/ESSD 保证持久化性能、1–10Gbps 带宽)、RocketMQ(Broker ≥8–16 核、64GB+ 内存保证 PageCache、ESSD 高 IOPS、带宽 ≥1–10Gbps)
- ✨【系统安全】网关安全(签名验签、防重放、TLS 加密)、服务器安全(SSH Key 登录、非标端口、内网隔离、堡垒机审计、最小权限、HIDS 入侵检测)、云存储安全(临时凭证、私有桶+签名 URL、文件校验与病毒扫描、异步回滚)、风控体系(实时规则、风险打分、离线复盘)、监控与审计(指标监控、日志溯源、告警止损)、测试与合规(全链路压测、安全/渗透测试、灾备演练、合规脱敏)
- ✨【数据一致性】缓存与数据库一致性(双删策略、延时双删、异步删除、binlog 订阅、重试机制)、大厂方案(Facebook 租约机制、Uber 版本号机制)、蓝绿回滚一致性(字段兼容、缓存过期/版本号隔离、消息队列兼容)、流量一致性(灰度+用户绑定、优雅下线、缓存预热+只读降级)、流程一致性(监控聚焦、资金链路兜底、自动化一键回滚)
- ✨【项目与团队管理】流程问题(联调缺失→排期兜底、需求频繁→优先级+需求池、三方对接混乱→文档化+分工)、管理问题(风险抵抗力弱→优先级/沟通/返讲/工时预警、成本超支→事前识别+过程控制+事后复盘、核心过于集中→培养备份+文档沉淀+合理排期、文档缺失→产品/技术/用户三类文档体系、培训不足→系统化入职+知识共享+工具化引导
- ✨【稳定性建设】上线三板斧(灰度发布→分批放量/AB测试/蓝绿切换,监控告警→业务/系统/中间件/链路四维监控+分级告警+收敛机制,回滚预案→代码/数据/流量一键回退+演练),线上五步闭环(快速发现→监控/日志/追踪/模拟,快速定位→链路分析/火焰图/慢SQL/流量回放,应急恢复→降级/熔断/补偿/切流,根因分析→五步归因法,长效治理→故障演练/容量规划/规范上线)

📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)、《解密程序员的思维密码——沟通、演讲、思考的实践》作者、清华大学出版社签约作家、Java领域优质创作者、优快云博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。
📙不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

🍊 Java高并发知识点之重量级锁:概述
在当今的软件开发领域,高并发已经成为一个不可忽视的关键问题。尤其是在处理大量用户请求或进行资源密集型操作时,如何有效地管理并发访问成为了一个亟待解决的难题。以Java为例,重量级锁作为一种常见的并发控制机制,其在高并发场景下的应用尤为关键。想象一下,在一个高并发的Web应用中,如果多个线程同时访问同一资源,而没有适当的锁机制来控制访问,那么很容易导致数据不一致或系统崩溃。因此,掌握重量级锁的概念、特点及其适用场景,对于Java开发者来说至关重要。
重量级锁在Java并发编程中扮演着重要角色,它通过锁定特定的资源来确保同一时间只有一个线程能够访问该资源。这种锁机制在多核处理器和大型服务器上尤为有效,因为它能够减少线程上下文切换的开销。接下来,我们将深入探讨重量级锁的概念,分析其与轻量级锁的区别,并详细阐述重量级锁的特点。此外,我们还将探讨重量级锁在实际开发中的应用场景,帮助读者更好地理解何时以及如何使用重量级锁来优化系统性能。通过这些内容的学习,读者将能够建立起对重量级锁的全面认知,为解决实际开发中的高并发问题打下坚实的基础。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线应用和远程协作等场景。区块链技术以分布式数据库形式存储数据块,应用于数字货币、智能合约和供应链管理等。
| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自动驾驶 | | 人工智能 | 模拟人类智能行为的技术 | 自动化、机器人、智能客服 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以区块形式存储 | 数字货币、智能合约、数据不可篡改 |
机器学习技术通过算法分析数据,实现从数据中学习并做出决策。其应用场景广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过神经网络模拟人脑处理信息,在图像识别、语音识别和自动驾驶等领域具有显著优势。人工智能技术模拟人类智能行为,广泛应用于自动化、机器人和智能客服等领域。云计算通过互联网提供动态易扩展且经常是虚拟化的资源,适用于大数据存储、在线服务和远程协作等场景。区块链作为一种分布式数据库技术,以其数据以区块形式存储和不可篡改的特点,在数字货币、智能合约等领域展现出巨大潜力。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能推荐等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术以分布式数据库形式存储数据块,应用于数字货币、智能合约和供应链管理等场景。
🍊 Java高并发知识点之重量级锁:实现原理
在Java并发编程中,高并发场景下的线程同步是至关重要的。一个典型的场景是,当多个线程同时访问共享资源时,如何保证数据的一致性和线程的安全性。这就引出了重量级锁的概念。重量级锁在Java中通过synchronized关键字实现,它能够有效地控制对共享资源的访问,防止数据竞争和不一致。在竞争激烈的环境中,重量级锁能够确保线程安全,避免资源冲突,从而提高系统的稳定性和性能。
接下来,我们将深入探讨重量级锁的几个关键方面。首先,我们将分析锁的竞争机制,了解在多线程环境下,如何有效地管理锁的获取和释放。其次,我们将探讨锁的释放过程,确保在锁被释放后,其他等待的线程能够正确地获取锁。最后,我们将讨论锁的等待与唤醒机制,这对于处理线程间的协作和同步至关重要。
通过学习这些内容,读者将能够全面理解重量级锁的实现原理,掌握如何在Java中正确使用重量级锁来保证线程安全。这不仅有助于解决实际开发中遇到的高并发问题,还能提升对Java并发编程的深入理解。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从数据中提取特征并形成决策模型,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能家居等。云计算通过互联网提供动态、易扩展的虚拟化资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能家居等。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用领域广泛,包括但不限于数据挖掘、图像识别和自然语言处理等。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等领域展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景丰富,涵盖自动驾驶、智能客服和智能家居等多个领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域具有广泛应用前景。
🍊 Java高并发知识点之重量级锁:锁优化
在Java高并发编程中,锁是保证线程安全的重要机制。然而,传统的重量级锁在处理高并发场景时,往往会导致性能瓶颈。为了解决这个问题,锁优化成为了提升并发性能的关键。想象一个场景,当多个线程同时访问一个共享资源时,如果使用传统的重量级锁,可能会导致线程频繁地阻塞和唤醒,从而降低系统的吞吐量。为了提高效率,锁优化技术应运而生。
锁优化主要包括锁粗化、锁细化和锁分段等策略。锁粗化通过减少锁的竞争范围,降低锁的粒度,从而提高并发性能。锁细化则是通过精确控制锁的持有时间,减少线程阻塞的时间。而锁分段则是将一个大锁拆分成多个小锁,使得线程可以并行访问不同的锁段,进一步降低锁的竞争。
接下来,我们将深入探讨这三个锁优化策略的具体实现和应用。首先,我们将介绍锁粗化的概念和实现方法,分析其在减少锁竞争方面的优势。随后,我们将探讨锁细化的技术细节,以及如何通过精确控制锁的持有时间来提高并发性能。最后,我们将介绍锁分段技术,并分析其在处理高并发场景时的优势。
通过学习这些锁优化策略,读者将能够更好地理解和应用Java高并发编程中的锁机制,从而提升系统的性能和稳定性。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括但不限于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等方面展现出卓越的性能。人工智能技术旨在模拟人类智能行为,其应用场景涵盖自动驾驶、智能客服和智能家居等多个领域。云计算技术通过互联网提供动态、易扩展且虚拟化的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库技术,以其链式结构存储数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能家居等。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库,以块的形式存储数据,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术以分布式数据库形式存储数据块,应用于数字货币、智能合约和供应链管理等场景。
🍊 Java高并发知识点之重量级锁:锁的选择
在软件开发过程中,尤其是在高并发环境下,合理选择锁机制对于保证程序的正确性和性能至关重要。以一个常见的场景为例,假设我们正在开发一个在线交易系统,当多个用户同时进行交易操作时,如何确保每个交易都能在互不干扰的情况下正确完成,防止数据不一致的问题,这就需要我们深入理解并合理运用锁的选择策略。
在Java编程语言中,锁的选择是高并发编程的核心知识点之一。synchronized关键字、ReentrantLock以及乐观锁与悲观锁都是Java并发编程中常用的锁机制。synchronized关键字是Java语言提供的一种内置锁,它能够保证在同一时刻只有一个线程可以访问同步代码块。ReentrantLock是Java 5引入的一种更高级的锁机制,它提供了比synchronized更丰富的功能,如可中断的锁获取、公平锁等。而乐观锁与悲观锁则是两种不同的锁策略,乐观锁假设在大多数情况下不会发生冲突,因此不会锁定资源,只有在检测到冲突时才进行回滚;而悲观锁则认为冲突是不可避免的,因此在操作资源前会先锁定资源。
接下来,我们将对这三个知识点进行详细探讨。首先,我们将深入解析synchronized关键字的原理和使用方法,了解其在保证线程安全方面的作用。随后,我们将介绍ReentrantLock的特性和优势,以及如何在实际开发中运用它来提高并发性能。最后,我们将对比乐观锁与悲观锁的原理和适用场景,帮助读者根据具体需求选择合适的锁策略。通过学习这些内容,读者将能够更好地理解和掌握Java高并发编程中的锁机制,为构建高效、稳定的并发程序打下坚实的基础。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并自动做出决策。其广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的子集,通过模拟人脑处理信息的方式,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术模拟人类智能行为,在自动驾驶、智能客服和智能家居等领域发挥着重要作用。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法分析数据,具备从数据中学习并做出决策的能力,广泛应用于数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,通过神经网络模拟人脑处理信息,在图像识别、语音识别、自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服、智能推荐等场景。云计算通过互联网提供动态易扩展且经常是虚拟化的资源,适用于大数据存储、在线服务、远程协作等。区块链作为一种分布式数据库技术,以链式结构存储数据块,在数字货币、智能合约、供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以区块的形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括但不限于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景涵盖自动驾驶、智能客服和智能家居等多个领域。云计算技术通过互联网提供动态、易扩展且虚拟化的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库技术,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域发挥着重要作用。
🍊 Java高并发知识点之重量级锁:案例分析
在当今的软件开发领域,高并发已经成为一个不可忽视的关键问题。尤其是在生产环境中,系统需要处理大量的并发请求,这就要求开发者必须掌握高并发编程的相关知识。其中,重量级锁是Java高并发编程中的一个重要知识点。以一个典型的场景为例,假设我们正在开发一个高并发的Web应用,当多个线程同时访问同一资源时,如何保证数据的一致性和线程安全,就是一个需要解决的关键问题。重量级锁在这种情况下发挥着至关重要的作用,它能够有效地控制对共享资源的访问,防止数据竞争和一致性问题。接下来,我们将从生产环境中的锁优化、锁竞争导致的死锁以及锁优化带来的性能提升三个方面,深入探讨重量级锁在实际开发中的应用和优化策略。通过学习这些内容,读者将能够更好地理解和掌握重量级锁的使用方法,从而提高Java高并发程序的性能和稳定性。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用领域广泛,包括但不限于数据挖掘、图像识别和自然语言处理等。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等领域展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景丰富,涵盖自动驾驶、智能客服和智能家居等多个领域。云计算技术通过互联网提供动态、易扩展且虚拟化的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库技术,以其链式结构存储数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自动驾驶 | | 人工智能 | 模拟人类智能行为的技术 | 自动化、智能客服、智能家居 | | 大数据 | 数据量巨大,需要特殊技术处理和分析 | 金融分析、医疗健康、交通管理 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 企业IT、在线服务、移动应用 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自动驾驶等领域展现出强大的应用潜力。人工智能技术旨在模拟人类智能行为,其应用场景包括自动化、智能客服和智能家居等。大数据技术处理和分析海量数据,在金融分析、医疗健康和交通管理等领域发挥重要作用。云计算通过互联网提供动态易扩展的资源,广泛应用于企业IT、在线服务和移动应用等领域。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法分析数据,具备从数据中学习并做出决策的能力,广泛应用于数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,采用神经网络模拟人脑处理信息,在图像识别、语音识别、自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服、智能推荐等场景。云计算通过互联网提供动态易扩展且虚拟化的资源,适用于大数据存储、在线服务、远程协作等。区块链技术作为一种分布式数据库,以链式结构存储数据块,在数字货币、智能合约、供应链管理等领域具有广泛应用。
🍊 Java高并发知识点之重量级锁:总结
在当今的软件开发领域,高并发已经成为一个不可忽视的关键问题。尤其是在Java编程语言中,如何有效地处理高并发场景下的线程同步,成为了开发者必须面对的挑战。以一个典型的场景为例,假设我们正在开发一个高流量的在线交易系统,当多个用户同时发起交易请求时,如何保证数据的一致性和系统的稳定性,就是一个需要深入探讨的问题。这就引出了Java高并发知识点中的重量级锁。
重量级锁在Java并发编程中扮演着至关重要的角色。它能够有效地控制对共享资源的访问,防止多个线程同时修改同一资源,从而避免数据竞争和不一致的问题。在实际开发中,合理地使用重量级锁能够显著提高系统的性能和稳定性。接下来,我们将从总结经验的角度出发,回顾重量级锁的核心概念、实现方式以及在实际应用中的注意事项。同时,我们还将展望未来,探讨重量级锁在Java并发编程中的发展趋势和潜在改进方向。通过这些内容的学习,读者将能够更加深入地理解重量级锁的原理和应用,为解决实际开发中的高并发问题提供有力的理论支持。
| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,具有去中心化、不可篡改等特点 | 数字货币、智能合约、供应链管理 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的子集,通过模拟人脑处理信息的方式,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术模拟人类智能行为,在自动驾驶、智能客服和智能家居等领域发挥着重要作用。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术以其去中心化、不可篡改的特点,在数字货币、智能合约和供应链管理等领域展现出巨大潜力。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别等 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以区块的形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的一个分支,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景广泛,包括自动驾驶、智能客服和智能推荐等。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以区块形式存储数据,在数字货币、智能合约和供应链管理等领域具有广泛应用。

博主分享
📥博主的人生感悟和目标

📙经过多年在优快云创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。
- 《Java项目实战—深入理解大型互联网企业通用技术》基础篇的购书链接:https://item.jd.com/14152451.html
- 《Java项目实战—深入理解大型互联网企业通用技术》基础篇繁体字的购书链接:http://product.dangdang.com/11821397208.html
- 《Java项目实战—深入理解大型互联网企业通用技术》进阶篇的购书链接:https://item.jd.com/14616418.html
- 《Java项目实战—深入理解大型互联网企业通用技术》架构篇待上架
- 《解密程序员的思维密码--沟通、演讲、思考的实践》购书链接:https://item.jd.com/15096040.html
面试备战资料
八股文备战
| 场景 | 描述 | 链接 |
|---|---|---|
| 时间充裕(25万字) | Java知识点大全(高频面试题) | Java知识点大全 |
| 时间紧急(15万字) | Java高级开发高频面试题 | Java高级开发高频面试题 |
理论知识专题(图文并茂,字数过万)
| 技术栈 | 链接 |
|---|---|
| RocketMQ | RocketMQ详解 |
| Kafka | Kafka详解 |
| RabbitMQ | RabbitMQ详解 |
| MongoDB | MongoDB详解 |
| ElasticSearch | ElasticSearch详解 |
| Zookeeper | Zookeeper详解 |
| Redis | Redis详解 |
| MySQL | MySQL详解 |
| JVM | JVM详解 |
集群部署(图文并茂,字数过万)
| 技术栈 | 部署架构 | 链接 |
|---|---|---|
| MySQL | 使用Docker-Compose部署MySQL一主二从半同步复制高可用MHA集群 | Docker-Compose部署教程 |
| Redis | 三主三从集群(三种方式部署/18个节点的Redis Cluster模式) | 三种部署方式教程 |
| RocketMQ | DLedger高可用集群(9节点) | 部署指南 |
| Nacos+Nginx | 集群+负载均衡(9节点) | Docker部署方案 |
| Kubernetes | 容器编排安装 | 最全安装教程 |
开源项目分享
| 项目名称 | 链接地址 |
|---|---|
| 高并发红包雨项目 | https://gitee.com/java_wxid/red-packet-rain |
| 微服务技术集成demo项目 | https://gitee.com/java_wxid/java_wxid |
管理经验
【公司管理与研发流程优化】针对研发流程、需求管理、沟通协作、文档建设、绩效考核等问题的综合解决方案:https://download.youkuaiyun.com/download/java_wxid/91148718
希望各位读者朋友能够多多支持!
现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
- 💂 博客主页: Java程序员廖志伟
- 👉 开源项目:Java程序员廖志伟
- 🌥 哔哩哔哩:Java程序员廖志伟
- 🎏 个人社区:Java程序员廖志伟
- 🔖 个人微信号:
SeniorRD
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~

650

被折叠的 条评论
为什么被折叠?



