1、Python数据分析流程及学习路径
数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。

根据每个部分需要用到的工具,Python数据分析的学习路径如下:

2、利用Python读写数据
Python读写数据,主要包括以下内容:

我们以一小段代码来看:

可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。
3、利用Python处理和计算数据

在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。
Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。

Scikit-leran则是著名的机器学习库,可以迅速使用各类机器学习算法。

5、利用Python数据可视化

数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。
学习资源推荐
除了上述分享,如果你也喜欢编程,想通过学习Python获取更高薪资,这里给大家分享一份Python学习资料。
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python学习路线


二、Python基础学习
1. 开发工具

2. 学习笔记

3. 学习视频

三、Python小白必备手册

四、数据分析全套资源

五、Python面试集锦
1. 面试资料


2. 简历模板

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
本文概述了Python数据分析的全流程,包括数据读写(pandas)、处理计算(NumPy)、分析建模(Statsmodels&Scikit-learn)和可视化。还提供了学习资源推荐和学习路线,强调规划对Python学习的重要性。
555

被折叠的 条评论
为什么被折叠?



