数据库编程知识点:ACID

本文深入解析了数据库事务处理中的ACID特性,即原子性、一致性、隔离性和持久性。通过具体例子阐述了这些特性如何确保数据完整性和一致性,特别是在并发处理和故障恢复中的作用。

ACID (atomicity, consistency, isolation, and durability)

■■ Atomicity:

All changes made during a transaction are made successfully,
or in the case of failure, none are made. If any operation fails during the
transaction, then the entire transaction is rolled back, leaving your data in
the state it was before the transaction was started. For example, suppose
Jack is making a transfer of $500 from his checking account to a savings
account. Sometime between the withdrawal of the $500 from the checking
account and the deposit of $500 to the savings account, the software running
the banking system crashes. Jack’s $500 has disappeared! With atomicity,
either the entire transfer would have happened, or none of it would
have happened, leaving Jack a much happier customer than he is now.


■■ Consistency:

 All operations transform the database from one consistent
state to another consistent state. Consistency is defined by how the database
schema is designed and whether integrity constraints such as foreign
keys are used. The database management system is responsible for ensuring
that transactions do not violate the database schema or integrity constraints.
For example, the bank’s database developers have declared in the
database schema that the balance of an account cannot be empty, or “null.”
If any transaction attempts to set the balance to an empty value, the transaction
will be aborted and any changes rolled back.


■■ Isolation:

A transaction’s changes are not made visible to other transactions
until they are committed under the atomicity rule described earlier.
This is best demonstrated by what happens when month-end reports are
generated. Let’s say that Jack is performing the transfer transaction outlined
in the atomicity example, and at the same time you are generating his
Why Use an RDBMS? 3
monthly statement. Without isolation, the monthly statement might show
the withdrawal from the checking account but not the deposit into the savings
account. This discrepancy would make it impossible for Jack or the
bank to balance their books.


■■ Durability:

 Once completed, a transaction’s changes are never lost
through system or hardware crashes. If Jill has paid for $50 worth of groceries
with her debit card at the grocery store and the transaction succeeds,
even if the database software crashes immediately after the
transaction competes, it won’t forget that her checking account balance is
$50 lower

原子性,一致性,不相关性和持久性

 

ACID是一种缩写,它代表了操作(也称为操作管理器)的四个主要性质:

原子性:在一个操作中涉及两个或两个以上独立的信息,这些信息要么全部提交,要么一个也不提交。

一致性:操作要么创建新的有效的数据状态,要么(如果发生任何错误的话),将所有数据返回到初始状态。

不相关性:操作在没有提交并不与别的任何操作发生任何关系。

持久性:即使发生错误重新启动,保存过的已经提交的数据在正确状态下仍然有效。

 

提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值