python3.6
pip3 install torchvision==0.2.0
MNIST手写数字0-9训练集下载
链接:https://pan.baidu.com/s/1kUiARaVTdFNAfJoS5xx6pw
提取码:xttr
错误
raise NotSupportedError(base.range(), "slicing multiple dimensions at the sa
借用一下其他大佬的测试代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
# 设置网络结构
class Net(nn.Module):
def __init__(self, in_features, out_features):
super(Net, self).__init__()
self.dnn1 = nn.Linear(in_features, 512) # 第一层全连接层
self.dnn2 = nn.Linear(512, out_features) # 第二层全连接层
def forward(self, x):
x = F.relu(self.dnn1(x)) # relu激活
x = self.dnn2(x)
return x
net = Net(28 * 28, 10)
# 加载MNIST数据集
train_dataset = datasets.MNIST('../data/MNIST', train=True, download=False, transform=transforms.ToTensor())
test_dataset = datasets.MNIST('../data/MNIST', train=False, download=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False)
# print(net)
# 开始训练
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.02)
for epoch in range(5):
running_loss, running_acc = 0.0, 0.0
for i, data in enumerate(train_loader):
img, label = data
img = img.reshape(-1, 28 * 28)
out = net(img)
loss = criterion(out, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * label.size(0)
_, predicted = torch.max(out, 1)
running_acc += (predicted == label).sum().item()
print('Epoch [{}/5], Step [{}/{}], Loss: {:.6f}, Acc: {:.6f}'.format(
epoch + 1, i + 1, len(train_loader), loss.item(), (predicted == label).sum().item() / 128))
# 测试
test_loss, test_acc = 0.0, 0.0
for i, data in enumerate(test_loader):
img, label = data
img = img.reshape(-1, 28 * 28)
out = net(img)
loss = criterion(out, label)
test_loss += loss.item() * label.size(0)
_, predicted = torch.max(out, 1)
test_acc += (predicted == label).sum().item()
print("Train {} epoch, Loss: {:.6f}, Acc: {:.6f}, Test_Loss: {:.6f}, Test_Acc: {:.6f}".format(
epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(train_dataset)),
test_loss / (len(test_dataset)), test_acc / (len(test_dataset))))