聪哥哥有话说之劝学

荀子《劝学》精读

关于学习读书的名言警句或是文章有一大吧。

比如三更灯火五更鸡,正是男儿读书时,就取自颜真卿的《劝学》

再比如书中自有黄金屋,书中自有颜如玉,就取自赵恒的《劝学文》

今天聪哥哥有话说专栏,分享的是荀子的《劝学》,个人认为不论是在校大学生,或者是在职多年的小伙伴们,都有必要读读。

至于为什么要读,你自己在某个早晨大声朗读或是心中默读,你就知道为什么要读。

很多东西,只可意会不可言传。

                                                                                          劝学-荀子(先秦)

君子曰:学不可以已

青,取之于蓝而青于蓝;冰,水为之而寒于水。木直中绳輮以为轮,其曲中规;虽有槁暴,不复挺者,輮使之然也。故木受绳则直,金就砺则利,君子博学而日参省乎己,则知明而行无过矣。

吾尝终日而思矣,不如须臾之所学也;吾尝跂而望矣,不如登高之博见也。登高而招,臂非加长也,而见者远;顺风而呼,声非加疾也,而闻者彰。假舆马者,非利足也,而致千里;假舟楫者,非能水也,而绝江河。君子生非异也,善假于物也。

积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。蚓无爪牙之利,筋骨之强,上食埃土,下饮黄泉,用心一也。蟹六跪而二螯,非蛇鳝之穴无可寄托者,用心躁也。

深度学习作为人工智能的关键分支,依托多层神经网络架构对高维数据进行模式识别与函数逼近,广泛应用于连续变量预测任务。在Python编程环境中,得益于TensorFlow、PyTorch等框架的成熟生态,研究者能够高效构建面向回归分析的神经网络模型。本资源库聚焦于通过循环神经网络及其优化变体解决时序预测问题,特别针对传统RNN在长程依赖建模中的梯度异常现象,引入具有门控机制的长短期记忆网络(LSTM)以增强序列建模能力。 实践案例涵盖从数据预处理到模型评估的全流程:首先对原始时序数据进行标准化处理与滑动窗口分割,随后构建包含嵌入层、双向LSTM层及全连接层的网络结构。在模型训练阶段,采用自适应矩估计优化器配合早停策略,通过损失函数曲线监测过拟合现象。性能评估不仅关注均方根误差等量化指标,还通过预测值与真实值的轨迹可视化进行定性分析。 资源包内部分为三个核心模块:其一是经过清洗的金融时序数据集,包含标准化后的股价波动记录;其二是模块化编程实现的模型构建、训练与验证流程;其三是基于Matplotlib实现的动态结果展示系统。所有代码均遵循面向对象设计原则,提供完整的类型注解与异常处理机制。 该实践项目揭示了深度神经网络在非线性回归任务中的优势:通过多层非线性变换,模型能够捕获数据中的高阶相互作用,而Dropout层与正则化技术的运用则保障了泛化能力。值得注意的是,当处理高频时序数据时,需特别注意序列平稳性检验与季节性分解等预处理步骤,这对预测精度具有决定性影响。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值